2007 | OriginalPaper | Buchkapitel
A finitary approach for the representation of the infinitesimal generator of a markovian semigroup
verfasst von : Schérazade Benhabib
Erschienen in: The Strength of Nonstandard Analysis
Verlag: Springer Vienna
Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.
Wählen Sie Textabschnitte aus um mit Künstlicher Intelligenz passenden Patente zu finden. powered by
Markieren Sie Textabschnitte, um KI-gestützt weitere passende Inhalte zu finden. powered by (Link öffnet in neuem Fenster)
This work is based on Nelson’s paper [
1
], where the central question was: under suitable regularity conditions, what is the form of the infinitesimal generator of a Markov semigroup?
In the elementary approach using IST [
2
]. the idea is to replace the continuous state space, such as ℝ with a finite state space
X
possibly containing an unlimited number of points. The topology on
X
arises naturally from the probability theory. For
x
ε
X
, let
$$ \mathcal{I}_x $$
be the set of all
h
∈
$$ \mathcal{M} $$
vanishing at
x
where
$$ \mathcal{M} $$
is the multiplier algebra of the domain
$$ \mathcal{D} $$
of the infinitesimal generator. To describe the structure of the semigroup generator
A
, we want to split
Ah
(
x
)=∑
y
∈
X
\{
x
}
a
(
x,y
)
h
(
y
) so that the contribution of the external set
F
x
of the points far from
x
appears separately. A definition of the quantity
α
ah
(
x
)=∑
y
∈
F
a
(
x,y
)
h
(
y
) is given using the least upper bound of the sums on all internal sets
W
included in the external set
F
. This leads to the characterization of the global part of the infinitesimal generator.