Skip to main content

2025 | OriginalPaper | Buchkapitel

A Finite Element Technique for Approximately Solving for the Electromagnetic Field Within a Cavity Resonator

verfasst von : Arti Vaish, Harish Parthasarathy, Rakhi Dua

Erschienen in: Proceedings of Third International Conference on Computational Electronics for Wireless Communications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper develops a four space-time dimensional finite element approach for approximately calculating the electromagnetic and Dirac fields within a 3-D cavity resonator taking into account the interaction between the two fields. The idea is to partition the four-dimensional space-time region consisting of the 3-D cavity and the finite time duration over which the fields are to be determined into four-dimensional simplices. Each simplex is defined by five vertex points in four-dimensional space-time and the fields within each such simplex are expressed as affine linear functions of the four simplex coordinates so that the values of the field at the vertices of the simplex coincides with the field value at that vertex. We then substitute these affine linear functions into the action functional of the electromagnetic field interacting with the Dirac field thereby yielding a quadratic function of the simplex vertex field values corresponding to the free field action plus cubic function of the vertex fields corresponding to the interaction action between the Dirac current and the electromagnetic field. By summing up this action over all the simplices into which we have partitioned the space-time region, we obtain a quadratic-cubic function of the field values at all the vertices of the different simplices. The problem of approximately calculating the fields within the cavity then amounts to minimizing this function of a finite number of complex variables corresponding to the field values at the vertices of the simplices. This optimization can be carried out using for example a gradient search algorithm or using perturbation theory for obtaining solutions to a system of nonlinear algebraic equations when the nonlinearity is small.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier
2.
Zurück zum Zitat Parthasarathy KR (1992) An introduction to quantum stochastic calculus. Springer Science and Business Media Parthasarathy KR (1992) An introduction to quantum stochastic calculus. Springer Science and Business Media
3.
Zurück zum Zitat Weinberg S (1995) The quantum theory of fields. Cambridge University Press Weinberg S (1995) The quantum theory of fields. Cambridge University Press
4.
Zurück zum Zitat Frisch MJ, Jackson JD (1975) Classical electrodynamics, 2nd edn. Wiley, New York, pp 155–158 Frisch MJ, Jackson JD (1975) Classical electrodynamics, 2nd edn. Wiley, New York, pp 155–158
5.
Zurück zum Zitat Hara M, Wada T, Fukasawa T, Kikuchi F (1983) A three dimensional analysis of RF electromagnetic fields by the finite element method. IEEE Trans Magn 19(6):2417–2420CrossRef Hara M, Wada T, Fukasawa T, Kikuchi F (1983) A three dimensional analysis of RF electromagnetic fields by the finite element method. IEEE Trans Magn 19(6):2417–2420CrossRef
6.
Zurück zum Zitat Jin JM (2015) The finite element method in electromagnetics. Wiley Jin JM (2015) The finite element method in electromagnetics. Wiley
7.
Zurück zum Zitat Thomas A, George J, Shalabney A, Dryzhakov M, Varma SJ, Moran J, Chervy T, Zhong X, Devaux E, Genet C, Hutchison JA (2016) Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field. Angew Chem 128(38):11634–11638CrossRef Thomas A, George J, Shalabney A, Dryzhakov M, Varma SJ, Moran J, Chervy T, Zhong X, Devaux E, Genet C, Hutchison JA (2016) Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field. Angew Chem 128(38):11634–11638CrossRef
8.
Zurück zum Zitat Sharma P, Lao L, Falcone G (2018) A microwave cavity resonator sensor for water-in-oil measurements. Sens Actuators B Chem 1(262):200–210CrossRef Sharma P, Lao L, Falcone G (2018) A microwave cavity resonator sensor for water-in-oil measurements. Sens Actuators B Chem 1(262):200–210CrossRef
9.
Zurück zum Zitat Alhegazi A, Zakaria Z, Shairi NA, Kamarudin MR, Alahnomi RA, Azize A, Wan Hassan WH, Bahar A, Al-Gburi AJ (2022) Novel technique of gap waveguide cavity resonator sensor with high resolution for liquid detection. Int J Antennas Propag 2022 Alhegazi A, Zakaria Z, Shairi NA, Kamarudin MR, Alahnomi RA, Azize A, Wan Hassan WH, Bahar A, Al-Gburi AJ (2022) Novel technique of gap waveguide cavity resonator sensor with high resolution for liquid detection. Int J Antennas Propag 2022
10.
Zurück zum Zitat Gupta R, Vaish A (2019) Deminiaturized mode control rectangular dielectric resonator antenna. Prog Electromagn Res M 86:173–182CrossRef Gupta R, Vaish A (2019) Deminiaturized mode control rectangular dielectric resonator antenna. Prog Electromagn Res M 86:173–182CrossRef
11.
Zurück zum Zitat Vaish A, Parthasarathy H (2008) Analysis of a rectangular waveguide using finite element method. Prog Electromagn Res C 2:117–125 Vaish A, Parthasarathy H (2008) Analysis of a rectangular waveguide using finite element method. Prog Electromagn Res C 2:117–125
12.
Zurück zum Zitat Vaish A, Parthasarathy H (2010) Cuboidal cavity resonator: effect of gravitational field produced by a black hole. Int J Eng Appl Sci 6(4):252–256 Vaish A, Parthasarathy H (2010) Cuboidal cavity resonator: effect of gravitational field produced by a black hole. Int J Eng Appl Sci 6(4):252–256
13.
Zurück zum Zitat Vaish A, Mahal A (2022) Simulative analysis of dense wavelength-division multiplexing (DWDM) oriented intersatellite optical wireless network. J Opt Vaish A, Mahal A (2022) Simulative analysis of dense wavelength-division multiplexing (DWDM) oriented intersatellite optical wireless network. J Opt
14.
Zurück zum Zitat Vaish A, Parthasarathy H (2010) Cutoff frequencies of electromagnetic waves propagating in a hexagonal waveguide. Int J Microw Opt Technol 5(5):305–311 Vaish A, Parthasarathy H (2010) Cutoff frequencies of electromagnetic waves propagating in a hexagonal waveguide. Int J Microw Opt Technol 5(5):305–311
15.
Zurück zum Zitat Vaish A, Parthasarathy H (2023) On some classical and quantum mechanical aspects of light in an optical fiber. J Opt 1–14 Vaish A, Parthasarathy H (2023) On some classical and quantum mechanical aspects of light in an optical fiber. J Opt 1–14
Metadaten
Titel
A Finite Element Technique for Approximately Solving for the Electromagnetic Field Within a Cavity Resonator
verfasst von
Arti Vaish
Harish Parthasarathy
Rakhi Dua
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1943-3_5