Skip to main content
Erschienen in:

04.01.2023

A Fire Source Localization Algorithm Based on Temperature and Smoke Sensor Data Fusion

verfasst von: Lijuan Li, Junjie Ye, Chenyang Wang, Chengwen Ge, Yuan Yu, Qingwu Zhang

Erschienen in: Fire Technology | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Traditional video surveillance, temperature-based or smoke-based fire source location methods are difficult to timely and accurately locate the fire source in warehouses with the characteristics of burning intensely, smoke spreading quickly, and being sheltered by shelves and goods. To overcome the drawbacks, a deep-learning-based fire source localization algorithm with temperature and smoke sensor data fusion according to the different stages of the combustion process is proposed in this paper. The temperature and smoke concentration information are collected from sensors distributed in different spatial locations of a warehouse. A convolutional neural network is used to exact the fusion data feature. The deep learning algorithm is adopted to construct the fire source localization model where the fusion data feature of temperature and smoke concentrations are the inputs and the fire source coordinates are the outputs. By using Fire Dynamics Simulator, a warehouse that meets the practical application is constructed and kinds of fire scenes are simulated. The experimental results show that the RMSE of the model localization reaches 0.63, 0.08, and 0.17 in three stages respectively, which verifies the effectiveness of the proposed fire source localization algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
3.
Zurück zum Zitat Ahrens M (2016) High-rise building fires. Quincy, NFPA (National Fire Protection Association) Ahrens M (2016) High-rise building fires. Quincy, NFPA (National Fire Protection Association)
19.
Zurück zum Zitat Regulations for fire safety management in warehouses (Ministry of Public Security Order No. 6). Ministry of Public Security Network.1990–04–10 Regulations for fire safety management in warehouses (Ministry of Public Security Order No. 6). Ministry of Public Security Network.1990–04–10
20.
Zurück zum Zitat Technical standard for smoke management systems in buildings GB51251–2017 Technical standard for smoke management systems in buildings GB51251–2017
24.
Zurück zum Zitat Code for design of automatic fire alarm system GB 50116 – 2013 Code for design of automatic fire alarm system GB 50116 – 2013
25.
Zurück zum Zitat Hu J, Zhang L, Wang R, Ma Q (2018) Fire accident inversion method base on STAMP and topological network for LNG depot. In: Pressure vessels and piping conference, vol 51708. American Society of Mechanical Engineers, p V007T07A032. https://doi.org/10.1115/PVP2018-85113 Hu J, Zhang L, Wang R, Ma Q (2018) Fire accident inversion method base on STAMP and topological network for LNG depot. In: Pressure vessels and piping conference, vol 51708. American Society of Mechanical Engineers, p V007T07A032. https://​doi.​org/​10.​1115/​PVP2018-85113
33.
Zurück zum Zitat Karlik B, Olgac AV (2011) Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int J Artif Intell Expert Syst 1(4):111–122 Karlik B, Olgac AV (2011) Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int J Artif Intell Expert Syst 1(4):111–122
Metadaten
Titel
A Fire Source Localization Algorithm Based on Temperature and Smoke Sensor Data Fusion
verfasst von
Lijuan Li
Junjie Ye
Chenyang Wang
Chengwen Ge
Yuan Yu
Qingwu Zhang
Publikationsdatum
04.01.2023
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 2/2023
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-022-01356-6

Weitere Artikel der Ausgabe 2/2023

Fire Technology 2/2023 Zur Ausgabe