Skip to main content
Erschienen in: Microsystem Technologies 7/2018

09.03.2018 | Technical Paper

A first principle approach toward circuit level modeling of electrically doped gated diode from single wall thymine nanotube-like structure

Erschienen in: Microsystem Technologies | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article presents a circuit level representation from gated diode which is developed from Thymine single wall nanotube-like structure using density functional theory and non-equilibrium Green’s function. Electrical doping process has been introduced to form the p and n region of this gated diode. This p–n junction diode is originated from the single wall Thymine bio-molecular nanotube-like structure. The atomically thin three-dimensional diode that can be realized from a single wall Thymine nanotube-like structure with optimum process step in 300 K. The operating frequency of this device is 1000 THz. The quantum-ballistic carrier transmission is analyzed using molecular projected self-consistent Hamiltonian and Hilbert space spanned basis functions quantum simulation process which ensures that this device acts as a diode and also shows strong non-linear current–voltage characteristics. Due to electrical doping process, no impurity or dopants are added externally to form p and n junction of the gated diode. A metallic gate has been incorporated to this theoretical model to vary the channel current of the diode. By varying the potential at the p and n side of the gated diode, the doping concentration can be varied. The 3.75 nm long and 1.42 nm wide Thymine single wall nanotube-like structure gated diode shows maximum 99.3 µA current at + 1 V applied bias voltage. This diode is used to implement the basic logic gates like AND, OR and NOR gate. First principle results and the available experimental results are therefore validated using atomistic simulation of the test bed molecules. These results suggested that this bio-molecular nano diode is capable for circuit level realization like implementation of logic gates and logic circuits, in high operating frequency oscillator, switches, memory devices etc. This theoretical study is an approach to implement circuit level modeling of molecules.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bai P, Lam KT, Li E, Chang KKF (2007) A comprehensive atomic study of carbon nanotube schottky diode using first principles approach. In: IEEE international electron devices meeting, IEDM 2007, pp 749–752) Bai P, Lam KT, Li E, Chang KKF (2007) A comprehensive atomic study of carbon nanotube schottky diode using first principles approach. In: IEEE international electron devices meeting, IEDM 2007, pp 749–752)
Zurück zum Zitat Datta S (2005) Quantum transport: atom to transistor. Cambridge University Press, CambridgeCrossRefMATH Datta S (2005) Quantum transport: atom to transistor. Cambridge University Press, CambridgeCrossRefMATH
Zurück zum Zitat Deng XQ, Zhang ZH, Tang GP, Fan ZQ, Qiu M, Guo C (2012) Rectifying behaviors induced by BN-doping in trigonal graphene with zigzag edges. Appl Phys Lett 100(6):063107CrossRef Deng XQ, Zhang ZH, Tang GP, Fan ZQ, Qiu M, Guo C (2012) Rectifying behaviors induced by BN-doping in trigonal graphene with zigzag edges. Appl Phys Lett 100(6):063107CrossRef
Zurück zum Zitat Dey D, Roy P, Purkayastha T, De D (2016) A first principle approach to design gated pin nanodiode. J Nano Res 36:16–30CrossRef Dey D, Roy P, Purkayastha T, De D (2016) A first principle approach to design gated pin nanodiode. J Nano Res 36:16–30CrossRef
Zurück zum Zitat Dey D, Roy P, De D (2016b) Electronic characterisation of atomistic modelling based electrically doped nano bio pin FET. IET Comput Digit Tech 10(5):273–285CrossRef Dey D, Roy P, De D (2016b) Electronic characterisation of atomistic modelling based electrically doped nano bio pin FET. IET Comput Digit Tech 10(5):273–285CrossRef
Zurück zum Zitat Dey D, Roy P, De D (2017a) Detection of ammonia and phosphine gas using heterojunction biomolecular chain with multilayer GaAs nanopore electrode. J Nanostruct 7(1):21–31 Dey D, Roy P, De D (2017a) Detection of ammonia and phosphine gas using heterojunction biomolecular chain with multilayer GaAs nanopore electrode. J Nanostruct 7(1):21–31
Zurück zum Zitat Dey D, Roy P, De D (2017b) Atomic scale modeling of electrically doped pin FET from adenine based single wall nanotube. J Mol Graph Model 76:118–127CrossRef Dey D, Roy P, De D (2017b) Atomic scale modeling of electrically doped pin FET from adenine based single wall nanotube. J Mol Graph Model 76:118–127CrossRef
Zurück zum Zitat Gao W, Kahn A (2003) Electrical doping: the impact on interfaces of π-conjugated molecular films. J Phys Condens Matter 15(38):S2757CrossRef Gao W, Kahn A (2003) Electrical doping: the impact on interfaces of π-conjugated molecular films. J Phys Condens Matter 15(38):S2757CrossRef
Zurück zum Zitat Kahn A, Koch N, Gao W (2003) Electronic structure and electrical properties of interfaces between metals and π-conjugated molecular films. J Polym Sci Part B Polym Phys 41(21):2529–2548CrossRef Kahn A, Koch N, Gao W (2003) Electronic structure and electrical properties of interfaces between metals and π-conjugated molecular films. J Polym Sci Part B Polym Phys 41(21):2529–2548CrossRef
Zurück zum Zitat Kahn A, Zhao W, Gao W, Vázquez H, Flores F (2006) Doping-induced realignment of molecular levels at organic–organic heterojunctions. Chem Phys 325(1):129–137CrossRef Kahn A, Zhao W, Gao W, Vázquez H, Flores F (2006) Doping-induced realignment of molecular levels at organic–organic heterojunctions. Chem Phys 325(1):129–137CrossRef
Zurück zum Zitat Ling YC, Ning F, Zhou YH, Chen KQ (2015) Rectifying behavior and negative differential resistance in triangular graphene p–n junctions induced by vertex B–N mixture doping. Org Electron 19:92–97CrossRef Ling YC, Ning F, Zhou YH, Chen KQ (2015) Rectifying behavior and negative differential resistance in triangular graphene p–n junctions induced by vertex B–N mixture doping. Org Electron 19:92–97CrossRef
Zurück zum Zitat Ling-Na C, Song-Shan M, Fang-Ping O, Jin X, Hui X (2011) First-principles study of metallic carbon nanotubes with boron/nitrogen co-doping. Chin Phys B 20(1):017103CrossRef Ling-Na C, Song-Shan M, Fang-Ping O, Jin X, Hui X (2011) First-principles study of metallic carbon nanotubes with boron/nitrogen co-doping. Chin Phys B 20(1):017103CrossRef
Zurück zum Zitat Luk WK, Dennard RH (2014) US Patent No. 8,675,403. US Patent and Trademark Office, Washington, DC Luk WK, Dennard RH (2014) US Patent No. 8,675,403. US Patent and Trademark Office, Washington, DC
Zurück zum Zitat Mahmoud A, Lugli P (2014) Toward circuit modeling of molecular devices. IEEE Trans Nanotechnol 13(3):510–516CrossRef Mahmoud A, Lugli P (2014) Toward circuit modeling of molecular devices. IEEE Trans Nanotechnol 13(3):510–516CrossRef
Zurück zum Zitat Rudaz SL (1998) Maximizing electrical doping while reducing material cracking in III-V nitride semiconductor devices. US Patent 5,729,029 Rudaz SL (1998) Maximizing electrical doping while reducing material cracking in III-V nitride semiconductor devices. US Patent 5,729,029
Zurück zum Zitat Shah KA, Dar JR (2014) Investigation of doping effects on electronic properties of two probe carbon nanotube system: a computational comparative study. Int J Innov Res Sci Eng Technol 3(11):17395–17402CrossRef Shah KA, Dar JR (2014) Investigation of doping effects on electronic properties of two probe carbon nanotube system: a computational comparative study. Int J Innov Res Sci Eng Technol 3(11):17395–17402CrossRef
Zurück zum Zitat Yamamori A, Adachi C, Koyama T, Taniguchi Y (1998) Doped organic light emitting diodes having a 650-nm-thick hole transport layer. Appl Phys Lett 72(17):2147–2149CrossRef Yamamori A, Adachi C, Koyama T, Taniguchi Y (1998) Doped organic light emitting diodes having a 650-nm-thick hole transport layer. Appl Phys Lett 72(17):2147–2149CrossRef
Zurück zum Zitat Yu S, Frisch J, Opitz A, Cohen E, Bendikov M, Koch N, Salzmann I (2015) Effect of molecular electrical doping on polyfuran based photovoltaic cells. Appl Phys Lett 106(20):203301CrossRef Yu S, Frisch J, Opitz A, Cohen E, Bendikov M, Koch N, Salzmann I (2015) Effect of molecular electrical doping on polyfuran based photovoltaic cells. Appl Phys Lett 106(20):203301CrossRef
Metadaten
Titel
A first principle approach toward circuit level modeling of electrically doped gated diode from single wall thymine nanotube-like structure
Publikationsdatum
09.03.2018
Erschienen in
Microsystem Technologies / Ausgabe 7/2018
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3831-4

Weitere Artikel der Ausgabe 7/2018

Microsystem Technologies 7/2018 Zur Ausgabe

Neuer Inhalt