Skip to main content
Erschienen in: Journal of Materials Science 9/2016

29.01.2016 | Original Paper

A first-principles lattice dynamical study of type-I, type-II, and type-VIII silicon clathrates

verfasst von: Payam Norouzzadeh, Charles W. Myles

Erschienen in: Journal of Materials Science | Ausgabe 9/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The pristine crystalline type-I, type-II, and type-VIII silicon clathrates have been studied using state of the art first-principles calculations based on density functional theory and density functional perturbation theory. We apply quasi-harmonic approximation to study structural stability, the possibility of temperature or pressure-driven phase transitions, along with Grüneisen parameters, coefficients of thermal expansion and thermal conductivities to estimate the degree of phonon anharmonicity for selected silicon clathrates. It is shown that a pressure-driven phase transition between type-I and type-II silicon clathrates may occur, and a temperature-driven phase transition between type-I and type-VIII Si clathrates at high temperature is likely. We further show that the relatively high Grüneisen parameters (1.5, 1.65, and 1.29, respectively for Si46-I, Si136-II, Si46-VIII), the existence of negative regions in the thermal expansion coefficient curves and very low thermal conductivities all indicate that the phonon anharmonicity in these silicon clathrates is high.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The Birch-Murnaghan equation of state for the energy E as a function of volume V reads E(V= E 0 + 9/8(BV 0)[(V 0/V)2/3 − 1]2 {1 + [(4 − B′)/2][1 − (V 0/V)2/3]}. E, E 0 , V, V 0, B and B′ are the energy, minimum energy, the volume, volume at the minimum energy, the bulk modulus and its pressure derivative, respectively.
 
Literatur
1.
Zurück zum Zitat Slack GA (1995) In: Rowe DM (ed) CRC Handbook of Thermoelectrics. CRC, Boca Raton Slack GA (1995) In: Rowe DM (ed) CRC Handbook of Thermoelectrics. CRC, Boca Raton
2.
Zurück zum Zitat Härkönen VJ, Karttunen AJ (2014) Ab initio lattice dynamical studies of silicon clathrate frameworks and their negative thermal expansion. Phys Rev B 89:024305CrossRef Härkönen VJ, Karttunen AJ (2014) Ab initio lattice dynamical studies of silicon clathrate frameworks and their negative thermal expansion. Phys Rev B 89:024305CrossRef
3.
Zurück zum Zitat Ashcroft NW, Mermin ND (1976) Solid State Physics. HRW International Editions, CBS Publishing Asia Ltd., Philadelphia Ashcroft NW, Mermin ND (1976) Solid State Physics. HRW International Editions, CBS Publishing Asia Ltd., Philadelphia
4.
Zurück zum Zitat Fujiwara A, Sugimoto K, Shih CH, Tanaka H, Tang J, Tanabe Y, Xu J, Heguri S, Tanigaki K, Takata M (2012) Quantitative relation between structure and thermal conductivity in type-I clathrates X8Ga16Ge30 (X = Sr, Ba) based on electrostatic-potential analysis. Phys Rev B 85:144305CrossRef Fujiwara A, Sugimoto K, Shih CH, Tanaka H, Tang J, Tanabe Y, Xu J, Heguri S, Tanigaki K, Takata M (2012) Quantitative relation between structure and thermal conductivity in type-I clathrates X8Ga16Ge30 (X = Sr, Ba) based on electrostatic-potential analysis. Phys Rev B 85:144305CrossRef
5.
Zurück zum Zitat Suekuni K, Takasu Y, Hasegawa T, Ogita N, Udagawa M, Avila MA, Takabatake T (2010) Off-center rattling modes and glasslike thermal conductivity in the type-I clathrate Ba8Ga16Sn30. Phys Rev B 81:205207CrossRef Suekuni K, Takasu Y, Hasegawa T, Ogita N, Udagawa M, Avila MA, Takabatake T (2010) Off-center rattling modes and glasslike thermal conductivity in the type-I clathrate Ba8Ga16Sn30. Phys Rev B 81:205207CrossRef
6.
Zurück zum Zitat Zheng X, Rodriguez SY, Ross JH Jr (2011) NMR relaxation and rattling phonons in type-I Ba8Ga16Sn30 clathrate. Phys Rev B 84:024303CrossRef Zheng X, Rodriguez SY, Ross JH Jr (2011) NMR relaxation and rattling phonons in type-I Ba8Ga16Sn30 clathrate. Phys Rev B 84:024303CrossRef
7.
Zurück zum Zitat Sales BC, Chakoumakos BC, Jin R, Thompson JR, Mandrus D (2001) Structural, magnetic, thermal, and transport properties of X8Ga16Ge30 (X = Eu, Sr, Ba) single crystals. Phys Rev B 63:245113CrossRef Sales BC, Chakoumakos BC, Jin R, Thompson JR, Mandrus D (2001) Structural, magnetic, thermal, and transport properties of X8Ga16Ge30 (X = Eu, Sr, Ba) single crystals. Phys Rev B 63:245113CrossRef
8.
Zurück zum Zitat Suekuni K, Avila MA, Umeo K, Fukuoka H, Yamanaka S, Nakagawa T, Takabatake T (2008) Simultaneous structure and carrier tuning of dimorphic clathrate Ba8Ga16Sn30. Phys Rev B 77:235119CrossRef Suekuni K, Avila MA, Umeo K, Fukuoka H, Yamanaka S, Nakagawa T, Takabatake T (2008) Simultaneous structure and carrier tuning of dimorphic clathrate Ba8Ga16Sn30. Phys Rev B 77:235119CrossRef
9.
Zurück zum Zitat Slack GA (1979) In: Ehrenreich H, Seitz F, Turnbull D (eds) Solid State Physics, vol 34. Academic Press, New York, p 1 Slack GA (1979) In: Ehrenreich H, Seitz F, Turnbull D (eds) Solid State Physics, vol 34. Academic Press, New York, p 1
10.
Zurück zum Zitat Nolas GS, Slack GA, Schujman SB (2001) In: Tritt TM (ed) Semiconductors and Semimetals. Academic Press, San Diego Nolas GS, Slack GA, Schujman SB (2001) In: Tritt TM (ed) Semiconductors and Semimetals. Academic Press, San Diego
11.
Zurück zum Zitat Beekman M, Nolas GS (2008) Inorganic clathrate-II materials of group 14: synthetic routes and physical properties. J Mater Chem 18:842CrossRef Beekman M, Nolas GS (2008) Inorganic clathrate-II materials of group 14: synthetic routes and physical properties. J Mater Chem 18:842CrossRef
12.
Zurück zum Zitat Martin J, Erickson S, Nolas GS, Alboni P, Tritt TM, Yang J (2006) Structural and transport properties of Ba8Ga16Si x Ge30−x clathrates. J Appl Phys 99:044903CrossRef Martin J, Erickson S, Nolas GS, Alboni P, Tritt TM, Yang J (2006) Structural and transport properties of Ba8Ga16Si x Ge30−x clathrates. J Appl Phys 99:044903CrossRef
13.
Zurück zum Zitat Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys 21:395502 Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys 21:395502
14.
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77:3865CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77:3865CrossRef
15.
Zurück zum Zitat Troullier N, Martins JL (1990) A Straightforward Method for Generating Soft Transferable Pseudopotentials. Solid State Commun 74:613CrossRef Troullier N, Martins JL (1990) A Straightforward Method for Generating Soft Transferable Pseudopotentials. Solid State Commun 74:613CrossRef
16.
Zurück zum Zitat Kleinman L, Bylander DM (1982) Efficacious Form for Model Pseudopotentials. Phys Rev Lett 48:1425CrossRef Kleinman L, Bylander DM (1982) Efficacious Form for Model Pseudopotentials. Phys Rev Lett 48:1425CrossRef
17.
Zurück zum Zitat Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188CrossRef Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188CrossRef
18.
Zurück zum Zitat Baroni S, Resta R (1986) Ab initio calculation of the macroscopic dielectric constant in silicon. Phys Rev B 33:7017CrossRef Baroni S, Resta R (1986) Ab initio calculation of the macroscopic dielectric constant in silicon. Phys Rev B 33:7017CrossRef
19.
Zurück zum Zitat Baroni S, Giannozzi P, Testa A (1861) Green’s-function approach to linear response in solids. Phys Rev Lett 1987:58 Baroni S, Giannozzi P, Testa A (1861) Green’s-function approach to linear response in solids. Phys Rev Lett 1987:58
20.
Zurück zum Zitat Alfe D (2009) PHON: a program to calculate phonons using the small displacement method. Comput Phys Commun 180:2622CrossRef Alfe D (2009) PHON: a program to calculate phonons using the small displacement method. Comput Phys Commun 180:2622CrossRef
21.
Zurück zum Zitat Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616CrossRef Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616CrossRef
22.
Zurück zum Zitat Tang X, Dong J, Hutchins P, Shebanova O, Gryko J, Barnes P, Cockcroft JK, Vickers M, McMillan PF (2006) Thermal properties of Si136: theoretical and experimental study of the type-II clathrate polymorph of Si. Phys Rev B 74:014109CrossRef Tang X, Dong J, Hutchins P, Shebanova O, Gryko J, Barnes P, Cockcroft JK, Vickers M, McMillan PF (2006) Thermal properties of Si136: theoretical and experimental study of the type-II clathrate polymorph of Si. Phys Rev B 74:014109CrossRef
23.
Zurück zum Zitat Fultz B (2010) Vibrational thermodynamics of materials. Prog Mater Sci 55:247CrossRef Fultz B (2010) Vibrational thermodynamics of materials. Prog Mater Sci 55:247CrossRef
24.
Zurück zum Zitat Gurevich VL, Parshin DA, Schober HR (2003) Anharmonicity, vibrational instability, and the Boson peak in glasses. Phys Rev B 67:094203CrossRef Gurevich VL, Parshin DA, Schober HR (2003) Anharmonicity, vibrational instability, and the Boson peak in glasses. Phys Rev B 67:094203CrossRef
25.
Zurück zum Zitat Broido DA, Ward A, Mingo N (2005) Lattice thermal conductivity of silicon from empirical interatomic potentials. Phys Rev B 72:014308CrossRef Broido DA, Ward A, Mingo N (2005) Lattice thermal conductivity of silicon from empirical interatomic potentials. Phys Rev B 72:014308CrossRef
26.
Zurück zum Zitat Narasimhan S, de Gironcoli S (2002) Ab initio calculation of the thermal properties of Cu: performance of the LDA and GGA. Phys Rev B 65:064302CrossRef Narasimhan S, de Gironcoli S (2002) Ab initio calculation of the thermal properties of Cu: performance of the LDA and GGA. Phys Rev B 65:064302CrossRef
27.
Zurück zum Zitat Smith TF, Birch JA, Collins JG (1976) Low-temperature heat capacity, thermal expansion and Gruneisen parameters for SnTe. J Phys C 9(24):4375CrossRef Smith TF, Birch JA, Collins JG (1976) Low-temperature heat capacity, thermal expansion and Gruneisen parameters for SnTe. J Phys C 9(24):4375CrossRef
28.
Zurück zum Zitat Julian CL (1965) Theory of Heat Conduction in Rare-Gas Crystals. Phys Rev 137:A128CrossRef Julian CL (1965) Theory of Heat Conduction in Rare-Gas Crystals. Phys Rev 137:A128CrossRef
29.
Zurück zum Zitat Connétable D (2010) First-principles calculations of carbon clathrates: Comparison to silicon and germanium clathrates. Phys Rev B 82(7):075209CrossRef Connétable D (2010) First-principles calculations of carbon clathrates: Comparison to silicon and germanium clathrates. Phys Rev B 82(7):075209CrossRef
30.
Zurück zum Zitat Moriguchi K, Munetoh S, Shintani A, Motooka T (2001) Empirical potential description of energetics and thermodynamic properties in expanded-volume silicon clathrates. Phys Rev B 64(19):195409CrossRef Moriguchi K, Munetoh S, Shintani A, Motooka T (2001) Empirical potential description of energetics and thermodynamic properties in expanded-volume silicon clathrates. Phys Rev B 64(19):195409CrossRef
31.
Zurück zum Zitat Saito S, Oshiyama A (1995) Electronic structure of Si 46 and Na 2 Ba 6 Si 46. Phys Rev B 51(4):2628CrossRef Saito S, Oshiyama A (1995) Electronic structure of Si 46 and Na 2 Ba 6 Si 46. Phys Rev B 51(4):2628CrossRef
32.
Zurück zum Zitat Giannozzi P, de Gironcoli S, Pavone P, Baroni S (1991) Ab initio calculation of phonon dispersions in semiconductors. Phys Rev B 43:7231CrossRef Giannozzi P, de Gironcoli S, Pavone P, Baroni S (1991) Ab initio calculation of phonon dispersions in semiconductors. Phys Rev B 43:7231CrossRef
33.
Zurück zum Zitat Maradudin AA, Montroll EW, Weiss GH, Ipatva IP (1971) Theory of lattice dynamics in the harmonic approximation, 2nd edn. Academic press, New York Maradudin AA, Montroll EW, Weiss GH, Ipatva IP (1971) Theory of lattice dynamics in the harmonic approximation, 2nd edn. Academic press, New York
34.
Zurück zum Zitat Nolas GS, Beekman M, Gryko J, Lamberton GA, Tritt TM, McMillan PF (2003) Thermal conductivity of elemental crystalline silicon clathrate Si136. Appl Phys Lett 82:6CrossRef Nolas GS, Beekman M, Gryko J, Lamberton GA, Tritt TM, McMillan PF (2003) Thermal conductivity of elemental crystalline silicon clathrate Si136. Appl Phys Lett 82:6CrossRef
35.
Zurück zum Zitat Wu J, Xu J, Prananto D, Shimotani H, Tanabe Y, Heguri S, Tanigaki K (2014) Systematic studies on anharmonicity of rattling phonons in type-I clathrates by low-temperature heat capacity measurements. Phys Rev B 89:214301CrossRef Wu J, Xu J, Prananto D, Shimotani H, Tanabe Y, Heguri S, Tanigaki K (2014) Systematic studies on anharmonicity of rattling phonons in type-I clathrates by low-temperature heat capacity measurements. Phys Rev B 89:214301CrossRef
36.
Zurück zum Zitat Norouzzadeh P, Myles CW, Vashaee D (2013) Prediction of a large number of electron pockets near the band edges in type-VIII clathrate Si46 and its physical properties from first principles. J Phys 25(47):475502 Norouzzadeh P, Myles CW, Vashaee D (2013) Prediction of a large number of electron pockets near the band edges in type-VIII clathrate Si46 and its physical properties from first principles. J Phys 25(47):475502
37.
Zurück zum Zitat Norouzzadeh P, Myles CW, Vashaee D (2014) Prediction of Giant Thermoelectric Power Factor in Type-VIII Clathrate Si46. Sci Rep 4:7028CrossRef Norouzzadeh P, Myles CW, Vashaee D (2014) Prediction of Giant Thermoelectric Power Factor in Type-VIII Clathrate Si46. Sci Rep 4:7028CrossRef
38.
Zurück zum Zitat Norouzzadeh P, Krasinski JS, Myles CW, Vashaee D (2015) Type-VIII Si based clathrates: prospects for a giant thermoelectric power factor. Phys Chem Chem Phys 17(14):8850–8859CrossRef Norouzzadeh P, Krasinski JS, Myles CW, Vashaee D (2015) Type-VIII Si based clathrates: prospects for a giant thermoelectric power factor. Phys Chem Chem Phys 17(14):8850–8859CrossRef
Metadaten
Titel
A first-principles lattice dynamical study of type-I, type-II, and type-VIII silicon clathrates
verfasst von
Payam Norouzzadeh
Charles W. Myles
Publikationsdatum
29.01.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 9/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-9766-1

Weitere Artikel der Ausgabe 9/2016

Journal of Materials Science 9/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.