Skip to main content
Erschienen in: Journal of Materials Science 24/2020

08.05.2020 | Composites & nanocomposites

A flexible, printable, thin-film thermoelectric generator based on reduced graphene oxide–carbon nanotubes composites

verfasst von: Tariq Mehmood, Jin Ho Kim, Do-Joong Lee, Sergey Dizhur, Elizabeth S. Hirst, Richard M. Osgood III, Muhammad Hassan Sayyad, Munawar Ali Munawar, Jimmy Xu

Erschienen in: Journal of Materials Science | Ausgabe 24/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermoelectric energy harvesting is one of the keystones of modern green renewable energy generation. Unfortunately, most conventional state-of-the-art inorganic semiconductor thermoelectric generators are expensive, fragile, and not flexible. Considering these limitations, we developed a flexible printable thermoelectric generator (TEG) with both n-type and p-type organic composites of reduced graphene oxide, carbon nanotubes, poly(3,4-ethylenedixoythiphene)–polystyrene sulfate, and lead sulfide composite materials. We constructed a TEG of ten alternating np pairs as a prototype with an effective area of 1.4 cm2 each, which generated 13 mV thermovoltage at operating temperature difference of 77 °C. It demonstrates that its fabrication is scalable, printable, and relatively simple, and the resultant structure is flexible, conformal, and reconfigurable.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhao LD, Lo SH, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508(7496):373–377CrossRef Zhao LD, Lo SH, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508(7496):373–377CrossRef
2.
Zurück zum Zitat Wu HJ, Zhao LD, Zheng FS, Wu D, Pei YL, Tong X, Kanatzidis MG, He JQ (2014) Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3. Nature Commun 5:4515CrossRef Wu HJ, Zhao LD, Zheng FS, Wu D, Pei YL, Tong X, Kanatzidis MG, He JQ (2014) Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3. Nature Commun 5:4515CrossRef
3.
Zurück zum Zitat Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856):597–602CrossRef Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856):597–602CrossRef
4.
Zurück zum Zitat Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA (2016) Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 1(10):16050CrossRef Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA (2016) Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 1(10):16050CrossRef
5.
Zurück zum Zitat Qu D, Li X, Wang H, Chen G (2019) Assembly strategy and performance evaluation of flexible thermoelectric devices. Adv Sci 6(15):1900584CrossRef Qu D, Li X, Wang H, Chen G (2019) Assembly strategy and performance evaluation of flexible thermoelectric devices. Adv Sci 6(15):1900584CrossRef
6.
Zurück zum Zitat Oh JY, Lee JH, Han SW, Chae SS, Bae EJ, Kang YH, Choi WJ, Cho SY, Lee J-O, Baik HK, Lee TI (2016) Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators. Energy Environ Sci 9(5):1696–1705CrossRef Oh JY, Lee JH, Han SW, Chae SS, Bae EJ, Kang YH, Choi WJ, Cho SY, Lee J-O, Baik HK, Lee TI (2016) Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators. Energy Environ Sci 9(5):1696–1705CrossRef
7.
Zurück zum Zitat Tan G, Zhao L-D, Kanatzidis MG (2016) Rationally designing high-performance bulk thermoelectric materials. Chem Rev 116(19):12123–12149CrossRef Tan G, Zhao L-D, Kanatzidis MG (2016) Rationally designing high-performance bulk thermoelectric materials. Chem Rev 116(19):12123–12149CrossRef
8.
Zurück zum Zitat Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895):1457–1461CrossRef Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895):1457–1461CrossRef
9.
Zurück zum Zitat Yue R, Xu J (2012) Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: a mini-review. Synth Met 162:912–917CrossRef Yue R, Xu J (2012) Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: a mini-review. Synth Met 162:912–917CrossRef
10.
Zurück zum Zitat Song H, Liu C, Xu J, Jiang Q, Shi H (2013) Fabrication of a layered nanostructure PEDOT:PSS/SWCNTs composite and its thermoelectric performance. RSC Adv 3(44):22065–22071CrossRef Song H, Liu C, Xu J, Jiang Q, Shi H (2013) Fabrication of a layered nanostructure PEDOT:PSS/SWCNTs composite and its thermoelectric performance. RSC Adv 3(44):22065–22071CrossRef
11.
Zurück zum Zitat Suk JW, Piner RD, An J, Ruoff RS (2010) Mechanical properties of monolayer graphene oxide. ACS Nano 4(11):6557–6564CrossRef Suk JW, Piner RD, An J, Ruoff RS (2010) Mechanical properties of monolayer graphene oxide. ACS Nano 4(11):6557–6564CrossRef
12.
Zurück zum Zitat Punckt C, Muckel F, Wolff S, Aksay IA, Chavarin CA, Bacher G, Mertin W (2013) The effect of degree of reduction on the electrical properties of functionalized graphene sheets. Appl Phys Lett 102(2):023114CrossRef Punckt C, Muckel F, Wolff S, Aksay IA, Chavarin CA, Bacher G, Mertin W (2013) The effect of degree of reduction on the electrical properties of functionalized graphene sheets. Appl Phys Lett 102(2):023114CrossRef
13.
Zurück zum Zitat Huang H, Li Z, She J, Wang W (2012) Oxygen density dependent band gap of reduced graphene oxide. J Appl Phys 111(5):054317CrossRef Huang H, Li Z, She J, Wang W (2012) Oxygen density dependent band gap of reduced graphene oxide. J Appl Phys 111(5):054317CrossRef
14.
Zurück zum Zitat Yan J-A, Chou MY (2010) Oxidation functional groups on graphene: structural and electronic properties. Phys Rev B 82(12):125403CrossRef Yan J-A, Chou MY (2010) Oxidation functional groups on graphene: structural and electronic properties. Phys Rev B 82(12):125403CrossRef
15.
Zurück zum Zitat Johari P, Shenoy VB (2011) Modulating optical properties of graphene oxide: role of prominent functional groups. ACS Nano 5(9):7640–7647CrossRef Johari P, Shenoy VB (2011) Modulating optical properties of graphene oxide: role of prominent functional groups. ACS Nano 5(9):7640–7647CrossRef
16.
Zurück zum Zitat Tu NDK, Choi J, Park CR, Kim H (2015) Remarkable conversion between n- and p-type reduced graphene oxide on varying the thermal annealing temperature. Chem Mater 27(21):7362–7369CrossRef Tu NDK, Choi J, Park CR, Kim H (2015) Remarkable conversion between n- and p-type reduced graphene oxide on varying the thermal annealing temperature. Chem Mater 27(21):7362–7369CrossRef
17.
Zurück zum Zitat Zhou W, Fan Q, Zhang Q, Cai L, Li K, Gu X, Yang F, Zhang N, Wang Y, Liu H, Zhou W, Xie S (2017) High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture. Nat Commun 8(1):14886CrossRef Zhou W, Fan Q, Zhang Q, Cai L, Li K, Gu X, Yang F, Zhang N, Wang Y, Liu H, Zhou W, Xie S (2017) High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture. Nat Commun 8(1):14886CrossRef
18.
Zurück zum Zitat Qu D, Huang X, Li X, Wang H, Chen G (2020) Annular flexible thermoelectric devices with integrated-module architecture. npj Flex Electron 4(1):1–7CrossRef Qu D, Huang X, Li X, Wang H, Chen G (2020) Annular flexible thermoelectric devices with integrated-module architecture. npj Flex Electron 4(1):1–7CrossRef
19.
Zurück zum Zitat Wang X, Wang H, Liu B (2018) Carbon nanotube-based organic thermoelectric materials for energy harvesting. Polymers 10(11):1196CrossRef Wang X, Wang H, Liu B (2018) Carbon nanotube-based organic thermoelectric materials for energy harvesting. Polymers 10(11):1196CrossRef
20.
Zurück zum Zitat Hone J, Ellwood I, Muno M, Mizel A, Cohen ML, Zettl A, Rinzler AG, Smalley RE (1998) Thermoelectric power of single-walled carbon nanotubes. Phys Rev Lett 80(5):1042–1045CrossRef Hone J, Ellwood I, Muno M, Mizel A, Cohen ML, Zettl A, Rinzler AG, Smalley RE (1998) Thermoelectric power of single-walled carbon nanotubes. Phys Rev Lett 80(5):1042–1045CrossRef
21.
Zurück zum Zitat Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459):1801–1804CrossRef Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459):1801–1804CrossRef
22.
Zurück zum Zitat Ryu Y, Yin L, Yu C (2012) Dramatic electrical conductivity improvement of carbon nanotube networks by simultaneous de-bundling and hole-doping with chlorosulfonic acid. J Mater Chem 22(14):6959–6964CrossRef Ryu Y, Yin L, Yu C (2012) Dramatic electrical conductivity improvement of carbon nanotube networks by simultaneous de-bundling and hole-doping with chlorosulfonic acid. J Mater Chem 22(14):6959–6964CrossRef
23.
Zurück zum Zitat Shim M, Javey A, Shi Kam NW, Dai H (2001) Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J Am Chem Soc 123(46):11512–11513CrossRef Shim M, Javey A, Shi Kam NW, Dai H (2001) Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J Am Chem Soc 123(46):11512–11513CrossRef
24.
Zurück zum Zitat Wu G, Zhang ZG, Li Y, Gao C, Wang X, Chen G (2017) Exploring high-performance n-type thermoelectric composites using amino-substituted rylene dimides and carbon nanotubes. ACS Nano 11(6):5746–5752CrossRef Wu G, Zhang ZG, Li Y, Gao C, Wang X, Chen G (2017) Exploring high-performance n-type thermoelectric composites using amino-substituted rylene dimides and carbon nanotubes. ACS Nano 11(6):5746–5752CrossRef
25.
Zurück zum Zitat Kim SM, Jang JH, Kim KK, Park HK, Bae JJ, Yu WJ, Lee IH, Kim G, Loc DD, Kim UJ, Lee E-H, Shin H-J, Choi J-Y, Lee YH (2009) Reduction-controlled viologen in bisolvent as an environmentally stable n-type dopant for carbon nanotubes. J Am Chem Soc 131(1):327–331CrossRef Kim SM, Jang JH, Kim KK, Park HK, Bae JJ, Yu WJ, Lee IH, Kim G, Loc DD, Kim UJ, Lee E-H, Shin H-J, Choi J-Y, Lee YH (2009) Reduction-controlled viologen in bisolvent as an environmentally stable n-type dopant for carbon nanotubes. J Am Chem Soc 131(1):327–331CrossRef
26.
Zurück zum Zitat Cho C, Culebras M, Wallace KL, Song Y, Holder K, Hsu J-H, Yu C, Grunlan JC (2016) Stable n-type thermoelectric multilayer thin films with high power factor from carbonaceous nanofillers. Nano Energy 28:426–432CrossRef Cho C, Culebras M, Wallace KL, Song Y, Holder K, Hsu J-H, Yu C, Grunlan JC (2016) Stable n-type thermoelectric multilayer thin films with high power factor from carbonaceous nanofillers. Nano Energy 28:426–432CrossRef
27.
Zurück zum Zitat Mehmood T, Kim JH, Lee D-J, Dizhur S, Odessey R, Hirst ES, Osgood RM, Sayyad MH, Munawar MA, Xu J (2019) A microstructuring route to enhanced thermoelectric efficiency of reduced graphene oxide films. Mater Res Express 6(7):075614CrossRef Mehmood T, Kim JH, Lee D-J, Dizhur S, Odessey R, Hirst ES, Osgood RM, Sayyad MH, Munawar MA, Xu J (2019) A microstructuring route to enhanced thermoelectric efficiency of reduced graphene oxide films. Mater Res Express 6(7):075614CrossRef
28.
Zurück zum Zitat Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11(3):771–778CrossRef Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11(3):771–778CrossRef
29.
Zurück zum Zitat Wahab F, Fernandes GE, Kim JH, Jung S, Kim K-B, Hassan Sayyad M, Xu J (2014) High seebeck coefficient in solution-grown PbS films. J Electron Mater 43(2):348–352CrossRef Wahab F, Fernandes GE, Kim JH, Jung S, Kim K-B, Hassan Sayyad M, Xu J (2014) High seebeck coefficient in solution-grown PbS films. J Electron Mater 43(2):348–352CrossRef
30.
Zurück zum Zitat Hennrich F, Krupke R, Lebedkin S, Arnold K, Fischer R, Resasco DE, Kappes MM (2005) Raman spectroscopy of individual single-walled carbon nanotubes from various sources. J Phys Chem B 109(21):10567–10573CrossRef Hennrich F, Krupke R, Lebedkin S, Arnold K, Fischer R, Resasco DE, Kappes MM (2005) Raman spectroscopy of individual single-walled carbon nanotubes from various sources. J Phys Chem B 109(21):10567–10573CrossRef
31.
Zurück zum Zitat Molina-Duarte J, Espinosa-Vega LI, Rodríguez AG, Guirado-López RA (2017) Raman spectra of single walled carbon nanotubes at high temperatures: pretreating samples in a nitrogen atmosphere improves their thermal stability in air. Phys Chem Chem Phys 19(10):7215–7227CrossRef Molina-Duarte J, Espinosa-Vega LI, Rodríguez AG, Guirado-López RA (2017) Raman spectra of single walled carbon nanotubes at high temperatures: pretreating samples in a nitrogen atmosphere improves their thermal stability in air. Phys Chem Chem Phys 19(10):7215–7227CrossRef
32.
Zurück zum Zitat Saito R, Hofmann M, Dresselhaus G, Jorio A, Dresselhaus MS (2011) Raman spectroscopy of graphene and carbon nanotubes. Adv Phys 60(3):413–550CrossRef Saito R, Hofmann M, Dresselhaus G, Jorio A, Dresselhaus MS (2011) Raman spectroscopy of graphene and carbon nanotubes. Adv Phys 60(3):413–550CrossRef
Metadaten
Titel
A flexible, printable, thin-film thermoelectric generator based on reduced graphene oxide–carbon nanotubes composites
verfasst von
Tariq Mehmood
Jin Ho Kim
Do-Joong Lee
Sergey Dizhur
Elizabeth S. Hirst
Richard M. Osgood III
Muhammad Hassan Sayyad
Munawar Ali Munawar
Jimmy Xu
Publikationsdatum
08.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 24/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04750-z

Weitere Artikel der Ausgabe 24/2020

Journal of Materials Science 24/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.