Skip to main content
Erschienen in: Wireless Personal Communications 2/2022

07.07.2022

A Framework for Designing Unsupervised Pothole Detection by Integrating Feature Extraction Using Deep Recurrent Neural Network

verfasst von: R. Sathya, B. Saleena

Erschienen in: Wireless Personal Communications | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One of the significant causes of road accidents is the presence of potholes. In order to overcome this difficulty, several techniques have been designed, from manual reporting to authorities taking steps for auto-detection of pothole regions. Traditional techniques related to pothole detection fail in terms of risk during weather variations, high setup cost and no provision for night vision due to the lack of development in effective automatic pothole detection models effectively. The main objective of this work  is to design an automatic pothole detection model for identifying potholes at the earliest time period. To make the processing more manageable and improvise the detection performance, an optimized deep recurrent neural network (ODRNN) is proposed. The pothole detection model consists of three phases, pre-processing, feature extraction and unsupervised classification. Initially, the the set of images are gathered to make a dataset. The first phase is responsible for image enhancement which performs input image resizing, background noise removal utilizing median filter approach and RGB to grey scale conversion. The second phase is responsible for extracting the most relevant characteristics of the pothole region using Shape-based feature extraction approach. In the final phase, the extracted features are classified with ODRNN. To enhance the efficiency of conventional RNNs, the weight values of the classifier are optimized using the Improved Atom search optimization algorithm (IASO). It classifies the pothole and non-pothole region with a lesser error function, implemented and tested experimentally in terms of accuracy, recall, precision and error performance. This work provides better performance with a maximum accuracy of 97.7% to become a better strategy for pothole detection.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fan, R., Ozgunalp, U., Hosking, B., Liu, M., & Pitas, I. (2019). Pothole detection based on disparity transformation and road surface modeling. IEEE Transactions on Image Processing, 29, 897–908.MathSciNetMATHCrossRef Fan, R., Ozgunalp, U., Hosking, B., Liu, M., & Pitas, I. (2019). Pothole detection based on disparity transformation and road surface modeling. IEEE Transactions on Image Processing, 29, 897–908.MathSciNetMATHCrossRef
3.
Zurück zum Zitat Kang, B. H. & Choi, S. I. (2017, July). Pothole detection system using 2D LiDAR and camera. In 2017 Ninth international conference on ubiquitous and future networks (ICUFN), IEEE, (pp. 744–746). Kang, B. H. & Choi, S. I. (2017, July). Pothole detection system using 2D LiDAR and camera. In 2017 Ninth international conference on ubiquitous and future networks (ICUFN), IEEE, (pp. 744–746).
4.
Zurück zum Zitat Tsai, Y. C., & Chatterjee, A. (2018). Pothole detection and classification using 3D technology and watershed method. Journal of Computing in Civil Engineering, 32(2), 04017078.CrossRef Tsai, Y. C., & Chatterjee, A. (2018). Pothole detection and classification using 3D technology and watershed method. Journal of Computing in Civil Engineering, 32(2), 04017078.CrossRef
5.
Zurück zum Zitat Li, S., Yuan, C., Liu, D., & Cai, H. (2016). Integrated processing of image and GPR data for automated pothole detection. Journal of computing in civil engineering, 30(6), 04016015.CrossRef Li, S., Yuan, C., Liu, D., & Cai, H. (2016). Integrated processing of image and GPR data for automated pothole detection. Journal of computing in civil engineering, 30(6), 04016015.CrossRef
8.
Zurück zum Zitat Fox, A., Kumar, B. V., Chen, J., & Bai, F. (2017). Multi-lane pothole detection from crowd sourced under sampled vehicle sensor data. IEEE Transactions on Mobile Computing, 16(12), 3417–3430.CrossRef Fox, A., Kumar, B. V., Chen, J., & Bai, F. (2017). Multi-lane pothole detection from crowd sourced under sampled vehicle sensor data. IEEE Transactions on Mobile Computing, 16(12), 3417–3430.CrossRef
9.
Zurück zum Zitat Wu, C., Wang, Z., Hu, S., Lepine, J., Na, X., Ainalis, D., & Stettler, M. (2020). An automated machine-learning approach for road pothole detection using smart phone sensor data. Sensors, 20(19), 5564.CrossRef Wu, C., Wang, Z., Hu, S., Lepine, J., Na, X., Ainalis, D., & Stettler, M. (2020). An automated machine-learning approach for road pothole detection using smart phone sensor data. Sensors, 20(19), 5564.CrossRef
10.
Zurück zum Zitat Anaissi, A., Khoa, N. L. D., Rakotoarivelo, T., Alamdari, M. M., & Wang, Y. (2019). Smart pothole detection system using vehicle-mounted sensors and machine learning. Journal of Civil Structural Health Monitoring, 9(1), 91–102.CrossRef Anaissi, A., Khoa, N. L. D., Rakotoarivelo, T., Alamdari, M. M., & Wang, Y. (2019). Smart pothole detection system using vehicle-mounted sensors and machine learning. Journal of Civil Structural Health Monitoring, 9(1), 91–102.CrossRef
11.
Zurück zum Zitat Naveen, N., Yadav, S. M., & Kumar, A. S. (2018). A study on potholes and its effects on vehicular traffic. International Journal of Creative Research Thoughts, 6(1), 258–263. Naveen, N., Yadav, S. M., & Kumar, A. S. (2018). A study on potholes and its effects on vehicular traffic. International Journal of Creative Research Thoughts, 6(1), 258–263.
12.
Zurück zum Zitat Ng, A., & Loosemore, M. (2007). Risk allocation in the private provision of public infrastructure. International Journal of Project Management, 25(1), 66–76.CrossRef Ng, A., & Loosemore, M. (2007). Risk allocation in the private provision of public infrastructure. International Journal of Project Management, 25(1), 66–76.CrossRef
13.
Zurück zum Zitat Eriksson, J., Girod, L., Hull, B., Newton, R., Madden, S. & Balakrishnan, H. (2008, June) The pothole patrol: using a mobile sensor network for road surface monitoring. In Proceedings of the 6th international conference on Mobile systems, applications, and services (pp. 29–39). Eriksson, J., Girod, L., Hull, B., Newton, R., Madden, S. & Balakrishnan, H. (2008, June) The pothole patrol: using a mobile sensor network for road surface monitoring. In Proceedings of the 6th international conference on Mobile systems, applications, and services (pp. 29–39).
14.
Zurück zum Zitat Gothane, S., & Sarode, D. M. (2015). Case study: Analysis and study of different approaches for road network maintenance. International Journal of Scientific Engineering and Research, 3, 1–4. Gothane, S., & Sarode, D. M. (2015). Case study: Analysis and study of different approaches for road network maintenance. International Journal of Scientific Engineering and Research, 3, 1–4.
15.
Zurück zum Zitat Dirgahayani, P., Rachmat, S. Y., Nasution, M., & Fauzi, M. (2017). Bicycle lane and intersection facility planning methodology based on safety, comfort and attractiveness criteria in motorist dominated traffic condition. Journal of the Eastern Asia Society for Transportation Studies, 12, 1279–1298. Dirgahayani, P., Rachmat, S. Y., Nasution, M., & Fauzi, M. (2017). Bicycle lane and intersection facility planning methodology based on safety, comfort and attractiveness criteria in motorist dominated traffic condition. Journal of the Eastern Asia Society for Transportation Studies, 12, 1279–1298.
16.
Zurück zum Zitat Huidrom, L., Das, L. K., & Sud, S. K. (2013). Method for automated assessment of potholes, cracks and patches from road surface video clips. Procedia-Social and Behavioral Sciences, 104, 312–321.CrossRef Huidrom, L., Das, L. K., & Sud, S. K. (2013). Method for automated assessment of potholes, cracks and patches from road surface video clips. Procedia-Social and Behavioral Sciences, 104, 312–321.CrossRef
17.
Zurück zum Zitat Adam, B., Mussari, R., & Jones, R. (2011). The diversity of accrual policies in local government financial reporting: An examination of infrastructure, art and heritage assets in Germany, Italy and the UK. Financial Accountability & Management, 27(2), 107–133.CrossRef Adam, B., Mussari, R., & Jones, R. (2011). The diversity of accrual policies in local government financial reporting: An examination of infrastructure, art and heritage assets in Germany, Italy and the UK. Financial Accountability & Management, 27(2), 107–133.CrossRef
18.
Zurück zum Zitat Sathya, R., Rugveda Muralidhar, I., Sai Harsha Vardhan, K., Sri Karan, R., & Arun Reddy, B. (2019). Data Efficient approaches on Deep Action Recognition in Videos. International Journal of Engineering and Advanced Technology (IJEAT), 8(4), 385–391. Sathya, R., Rugveda Muralidhar, I., Sai Harsha Vardhan, K., Sri Karan, R., & Arun Reddy, B. (2019). Data Efficient approaches on Deep Action Recognition in Videos. International Journal of Engineering and Advanced Technology (IJEAT), 8(4), 385–391.
19.
Zurück zum Zitat Sathya, R., Rawat, D., Mondal, A., Choudhary, S., & Jain, A. (2019). Economically efficient data feature selection using big data analysis. International Journal of Innovative Technology and Exploring Engineering, 8(7), 983–987. Sathya, R., Rawat, D., Mondal, A., Choudhary, S., & Jain, A. (2019). Economically efficient data feature selection using big data analysis. International Journal of Innovative Technology and Exploring Engineering, 8(7), 983–987.
20.
Zurück zum Zitat Feghali, J. (2006). An evaluation of selected asphalt pavements in the City of Montreal. In Masters Abstracts International, 45(05), 1–8. Feghali, J. (2006). An evaluation of selected asphalt pavements in the City of Montreal. In Masters Abstracts International, 45(05), 1–8.
21.
Zurück zum Zitat Koch, C., Jog, G. M., & Brilakis, I. (2013). Automated pothole distress assessment using asphalt pavement video data. Journal of Computing in Civil Engineering, 27(4), 370–378.CrossRef Koch, C., Jog, G. M., & Brilakis, I. (2013). Automated pothole distress assessment using asphalt pavement video data. Journal of Computing in Civil Engineering, 27(4), 370–378.CrossRef
22.
Zurück zum Zitat Koch, C., Georgieva, K., Kasireddy, V., Akinci, B., & Fieguth, P. (2015). A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure. Advanced Engineering Informatics, 29(2), 196–210.CrossRef Koch, C., Georgieva, K., Kasireddy, V., Akinci, B., & Fieguth, P. (2015). A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure. Advanced Engineering Informatics, 29(2), 196–210.CrossRef
25.
Zurück zum Zitat Shah, S. & Deshmukh, C. (2019, December) Pothole and Bump detection using convolution neural networks. In 2019 IEEE transportation electrification conference (ITEC-India) , IEEE, (pp. 1–4). Shah, S. & Deshmukh, C. (2019, December) Pothole and Bump detection using convolution neural networks. In 2019 IEEE transportation electrification conference (ITEC-India) , IEEE, (pp. 1–4).
28.
Zurück zum Zitat Hoang, N. D., & Nguyen, Q. L. (2019). A novel method for asphalt pavement crack classification based on image processing and machine learning. Engineering with Computers, 35(2), 487–498.CrossRef Hoang, N. D., & Nguyen, Q. L. (2019). A novel method for asphalt pavement crack classification based on image processing and machine learning. Engineering with Computers, 35(2), 487–498.CrossRef
29.
Zurück zum Zitat Chen, H., Yao, M., & Gu, Q. (2020). Pothole detection using location-aware convolutional neural networks. International Journal of Machine Learning and Cybernetics, 11(4), 899–911.CrossRef Chen, H., Yao, M., & Gu, Q. (2020). Pothole detection using location-aware convolutional neural networks. International Journal of Machine Learning and Cybernetics, 11(4), 899–911.CrossRef
30.
Zurück zum Zitat Kyriakou, C., Christodoulou, S. E., & Dimitriou, L. (2019). Smartphone-based pothole detection utilizing artificial neural networks. Journal of Infrastructure Systems, 25(3), 04019019.CrossRef Kyriakou, C., Christodoulou, S. E., & Dimitriou, L. (2019). Smartphone-based pothole detection utilizing artificial neural networks. Journal of Infrastructure Systems, 25(3), 04019019.CrossRef
31.
Zurück zum Zitat Bhavya, P., Sharmila, C., Sai Sadhvi, Y., Prasanna, C. M., & Ganesan, V. (2021). Pothole detection using deep learning. In Smart Technologies in Data Science and Communication (pp. 233–243). Springer, Singapore. Bhavya, P., Sharmila, C., Sai Sadhvi, Y., Prasanna, C. M., & Ganesan, V. (2021). Pothole detection using deep learning. In Smart Technologies in Data Science and Communication (pp. 233–243). Springer, Singapore.
32.
Zurück zum Zitat Gupta, S., Sharma, P., Sharma, D., Gupta, V., & Sambyal, N. (2020). Detection and localization of potholes in thermal images using deep neural networks. Multimedia Tools and Applications, 79(35), 26265–26284.CrossRef Gupta, S., Sharma, P., Sharma, D., Gupta, V., & Sambyal, N. (2020). Detection and localization of potholes in thermal images using deep neural networks. Multimedia Tools and Applications, 79(35), 26265–26284.CrossRef
33.
Zurück zum Zitat Ning, X., Gong, K., Li, W., Zhang, L., Bai, X., & Tian, S. (2020). Feature refinement and filter network for person Re-identification. IEEE Transactions on Circuits and Systems for Video Technology, 31(9), 3391–3402.CrossRef Ning, X., Gong, K., Li, W., Zhang, L., Bai, X., & Tian, S. (2020). Feature refinement and filter network for person Re-identification. IEEE Transactions on Circuits and Systems for Video Technology, 31(9), 3391–3402.CrossRef
34.
Zurück zum Zitat Ning, X., Duan, P., Li, W., & Zhang, S. (2020). Real-time 3D face alignment using an encoder-decoder network with an efficient deconvolution layer. IEEE Signal Processing Letters, 27, 1944–1948.CrossRef Ning, X., Duan, P., Li, W., & Zhang, S. (2020). Real-time 3D face alignment using an encoder-decoder network with an efficient deconvolution layer. IEEE Signal Processing Letters, 27, 1944–1948.CrossRef
35.
Zurück zum Zitat Sathya, A., & Saleena, B. (2020). A survey on content based image retrieval using convolutional neural networks. International Journal of Advanced Trends in Computer Science and Engineering, 9(5), 7387–7396.CrossRef Sathya, A., & Saleena, B. (2020). A survey on content based image retrieval using convolutional neural networks. International Journal of Advanced Trends in Computer Science and Engineering, 9(5), 7387–7396.CrossRef
36.
Zurück zum Zitat Zhu, R. L., Shen, J., & Xie, L. (2016). Unsupervised visual hashing with semantic assistant for content-based image retrieval. IEEE Transactions on Knowledge and Data Engineering., 29(2), 472–486.CrossRef Zhu, R. L., Shen, J., & Xie, L. (2016). Unsupervised visual hashing with semantic assistant for content-based image retrieval. IEEE Transactions on Knowledge and Data Engineering., 29(2), 472–486.CrossRef
37.
Zurück zum Zitat Ouma, Y. O., & Hahn, M. (2017). Pothole detection on asphalt pavements from 2D-colour pothole images using fuzzy c-means clustering and morphological reconstruction. Automation in Construction, 83, 196–211. Ouma, Y. O., & Hahn, M. (2017). Pothole detection on asphalt pavements from 2D-colour pothole images using fuzzy c-means clustering and morphological reconstruction. Automation in Construction, 83, 196–211.
39.
Zurück zum Zitat Koch, C., & Brilakis, I. (2011). Pothole detection in asphalt pavement images. Advanced Engineering Informatics, 25(3), 507–515.CrossRef Koch, C., & Brilakis, I. (2011). Pothole detection in asphalt pavement images. Advanced Engineering Informatics, 25(3), 507–515.CrossRef
Metadaten
Titel
A Framework for Designing Unsupervised Pothole Detection by Integrating Feature Extraction Using Deep Recurrent Neural Network
verfasst von
R. Sathya
B. Saleena
Publikationsdatum
07.07.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09790-z

Weitere Artikel der Ausgabe 2/2022

Wireless Personal Communications 2/2022 Zur Ausgabe

Neuer Inhalt