Skip to main content
Erschienen in: Meccanica 3/2017

22.12.2015 | Advances in Biomechanics: from foundations to applications

A framework for synthetic validation of 3D echocardiographic particle image velocimetry

verfasst von: Ahmad Falahatpisheh, Arash Kheradvar

Erschienen in: Meccanica | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Particle image velocimetry (PIV) has been significantly advanced since its conception in early 1990s. With the advancement of imaging modalities, applications of 2D PIV have far expanded into biology and medicine. One example is echocardiographic particle image velocimetry that is used for in vivo mapping of the flow inside the heart chambers with opaque boundaries. Velocimetry methods can help better understanding the biomechanical problems. The current trend is to develop three-dimensional velocimetry techniques that take advantage of modern medical imaging tools. This study provides a novel framework for validation of velocimetry methods that are inherently three dimensional such as but not limited to those acquired by 3D echocardiography machines. This framework creates 3D synthetic fields based on a known 3D velocity field \({\mathbf{V}}\) and a given 3D brightness field \({\mathbf{B}}\). The method begins with computing the inverse flow \({\mathbf{V}}^{\varvec{*}} \) based on the velocity field \({\mathbf{V}}\). Then the transformation of \({\mathbf{B}}\), imposed by \({\mathbf{V}}\), is calculated using the computed inverse flow according to \({\mathbf{B}}^{\varvec{*}} \left( {\mathbf{x}} \right) = {\mathbf{B}}\left( {{\mathbf{x}} + {\mathbf{V}}^{\varvec{*}} \left( {\mathbf{x}} \right)} \right)\), where x is the coordinates of voxels in \({\mathbf{B}}^{\varvec{*}} \), with a 3D weighted average interpolation, which provides high accuracy, low memory requirement, and low computational time. To check the validity of the framework, we generate pairs of 3D brightness fields by employing Hill’s spherical vortex velocity field. \({\mathbf{B}}\) and the generated \({\mathbf{B}}^{\varvec{*}} \) are then processed by our in-house 3D particle image velocimetry software to obtain the interrelated velocity field. The results indicates that the computed and imposed velocity fields are in agreement.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Volumetric Digital Imaging and Communications in Medicine.
 
Literatur
1.
Zurück zum Zitat Westerweel J, Elsinga GE, Adrian RJ (2013) Particle image velocimetry for complex and turbulent flows. Annu Rev Fluid Mech 45(1):409–436ADSMathSciNetCrossRefMATH Westerweel J, Elsinga GE, Adrian RJ (2013) Particle image velocimetry for complex and turbulent flows. Annu Rev Fluid Mech 45(1):409–436ADSMathSciNetCrossRefMATH
2.
Zurück zum Zitat Pereira F, Gharib M (2002) Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows. Meas Sci Technol 13:683–694ADSCrossRef Pereira F, Gharib M (2002) Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows. Meas Sci Technol 13:683–694ADSCrossRef
3.
Zurück zum Zitat Barnhart DH, Adrian RJ, Papen GC (1994) Phase-conjugate holographic system for high-resolution particle-image velocimetry. Appl Opt 33(30):7159–7170ADSCrossRef Barnhart DH, Adrian RJ, Papen GC (1994) Phase-conjugate holographic system for high-resolution particle-image velocimetry. Appl Opt 33(30):7159–7170ADSCrossRef
4.
Zurück zum Zitat Falahatpisheh A, Pedrizzetti G, Kheradvar A (2014) Three-dimensional reconstruction of cardiac flows based on multi-planar velocity fields. Exp Fluids 55(11):1–15CrossRef Falahatpisheh A, Pedrizzetti G, Kheradvar A (2014) Three-dimensional reconstruction of cardiac flows based on multi-planar velocity fields. Exp Fluids 55(11):1–15CrossRef
5.
Zurück zum Zitat Elsinga GE et al (2006) Tomographic particle image velocimetry. Exp Fluids 41(6):933–947CrossRef Elsinga GE et al (2006) Tomographic particle image velocimetry. Exp Fluids 41(6):933–947CrossRef
6.
Zurück zum Zitat Okamoto K et al (2000) Evaluation of the 3D-PIV standard images (PIV-STD project). J Vis 3(2):115–123CrossRef Okamoto K et al (2000) Evaluation of the 3D-PIV standard images (PIV-STD project). J Vis 3(2):115–123CrossRef
7.
8.
Zurück zum Zitat Falahatpisheh A, Kheradvar A (2012) High-speed particle image velocimetry to assess cardiac fluid dynamics in vitro: From performance to validation. Eur J Mech B Fluids 35:2–8CrossRef Falahatpisheh A, Kheradvar A (2012) High-speed particle image velocimetry to assess cardiac fluid dynamics in vitro: From performance to validation. Eur J Mech B Fluids 35:2–8CrossRef
9.
Zurück zum Zitat Kheradvar A, Falahatpisheh A (2012) The effects of dynamic saddle annulus and leaflet length on transmitral flow pattern and leaflet stress of a bileaflet bioprosthetic mitral valve. J Heart Valve Dis 21(2):225 Kheradvar A, Falahatpisheh A (2012) The effects of dynamic saddle annulus and leaflet length on transmitral flow pattern and leaflet stress of a bileaflet bioprosthetic mitral valve. J Heart Valve Dis 21(2):225
10.
Zurück zum Zitat Groves EM et al (2014) The effects of positioning of transcatheter aortic valves on fluid dynamics of the aortic root. ASAIO J 60(5):545–552CrossRef Groves EM et al (2014) The effects of positioning of transcatheter aortic valves on fluid dynamics of the aortic root. ASAIO J 60(5):545–552CrossRef
11.
Zurück zum Zitat Sengupta PP et al (2012) Emerging trends in CV flow visualization. JACC Cardiovasc Imaging 5(3):305–316CrossRef Sengupta PP et al (2012) Emerging trends in CV flow visualization. JACC Cardiovasc Imaging 5(3):305–316CrossRef
12.
Zurück zum Zitat Falahatpisheh A, Kheradvar A (2015) A measure of axisymmetry for vortex rings. Eur J Mech B/Fluids 49, Part A(0):264–271CrossRef Falahatpisheh A, Kheradvar A (2015) A measure of axisymmetry for vortex rings. Eur J Mech B/Fluids 49, Part A(0):264–271CrossRef
13.
Zurück zum Zitat Falahatpisheh A, Pahlevan N, Kheradvar A (2015) Effect of the mitral valve’s anterior leaflet on axisymmetry of transmitral vortex ring. Ann Biomed Eng 43(10):2349–2360CrossRef Falahatpisheh A, Pahlevan N, Kheradvar A (2015) Effect of the mitral valve’s anterior leaflet on axisymmetry of transmitral vortex ring. Ann Biomed Eng 43(10):2349–2360CrossRef
14.
Zurück zum Zitat Sánchez J, Salgado A, Monzón N (2015) Computing inverse optical flow. Pattern Recogn Lett 52:32–39CrossRef Sánchez J, Salgado A, Monzón N (2015) Computing inverse optical flow. Pattern Recogn Lett 52:32–39CrossRef
16.
Zurück zum Zitat Falahatpisheh A, Kheradvar A (2014) Volumetric echocardiographic particle image velocimetry (V-Echo-PIV). Circulation 130(Suppl 2):A14952 Falahatpisheh A, Kheradvar A (2014) Volumetric echocardiographic particle image velocimetry (V-Echo-PIV). Circulation 130(Suppl 2):A14952
Metadaten
Titel
A framework for synthetic validation of 3D echocardiographic particle image velocimetry
verfasst von
Ahmad Falahatpisheh
Arash Kheradvar
Publikationsdatum
22.12.2015
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 3/2017
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-015-0342-6

Weitere Artikel der Ausgabe 3/2017

Meccanica 3/2017 Zur Ausgabe

Advances in Biomechanics: from foundations to applications

Patient-specific finite element analysis of popliteal stenting

Advances in Biomechanics: from foundations to applications

Self-adjustment mechanisms and their application for orthosis design

Advances in Biomechanics: from foundations to applications

Growth and remodeling of load-bearing biological soft tissues

Advances in Biomechanics: from foundations to applications

Fluid flow in a helical vessel in presence of a stenosis

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.