Skip to main content
Erschienen in: Wireless Personal Communications 2/2021

21.11.2020

A Framework on the Performance Analysis of Cooperative Wireless Body Area Networks

verfasst von: Ehsan Soleimani-Nasab, Maryam Abbaspour

Erschienen in: Wireless Personal Communications | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless body area networks (WBANs) are deal with wireless networks in the human body. We describe the performance analysis of dual-hop cooperative relaying systems employing amplify-and-forward (AF) technique in WBANs over independent and nonnecessary identically distributed Gamma fading channels. More specifically, we present closed-form derivations of the outage probabilities (OP), symbol error probabilities (SEP) and ergodic capacity (EC) for fixed gain and channel state information (CSI)-assisted relaying techniques at arbitrary signal-to-noise-ratios (SNRs). We also deduce novel expressions in the high SNR region. By doing so, we can quantify the performance of system by the diversity and coding gains. Using the derived expressions as a starting point and for the case of Exponential fading, we consider three practical optimization scenarios. They are optimal relay position with fixed power allocation, power allocation under the fixed location of the relay and joint optimization of power allocation and relay position under a transmit power constraint. The Monte Carlo simulations are used to validate the accuracy of our derivations, where it is demonstrated that the proposed adaptive allocation method significantly outperforms the fixed allocation method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE Communications Surveys and Tutorials, 16(3), 1658–1686.CrossRef Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE Communications Surveys and Tutorials, 16(3), 1658–1686.CrossRef
2.
Zurück zum Zitat Jamthe, A., & Agrawal, D. P. (2015). Harnessing big data for wireless body area network applications. In Proceeding of International Conference on Computational Intelligence and Communication Networks (CICN) (pp. 868–875). IEEE: Jabalpur, India. Jamthe, A., & Agrawal, D. P. (2015). Harnessing big data for wireless body area network applications. In Proceeding of International Conference on Computational Intelligence and Communication Networks (CICN) (pp. 868–875). IEEE: Jabalpur, India.
3.
Zurück zum Zitat Naganawa, J.-I., Wangchuk, K., Kim, M., Aoyagi, T., & Takada, J.-I. (2015). Simulation-based scenario-specific channel modeling for wban cooperative transmission schemes. IEEE Journal of Biomedical and Health Informatics, 19(2), 559–570.CrossRef Naganawa, J.-I., Wangchuk, K., Kim, M., Aoyagi, T., & Takada, J.-I. (2015). Simulation-based scenario-specific channel modeling for wban cooperative transmission schemes. IEEE Journal of Biomedical and Health Informatics, 19(2), 559–570.CrossRef
4.
Zurück zum Zitat Laneman, J. N., Tse, D. N., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRef Laneman, J. N., Tse, D. N., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRef
5.
Zurück zum Zitat Chen, Y., Teo, J., Lai, J. C. Y., Gunawan, E., Low, K. S., Soh, C. B., et al. (2009). Cooperative communications in ultra-wideband wireless body area networks: channel modeling and system diversity analysis. IEEE Journal on Selected Areas in Communications, 27(1), 5–16.CrossRef Chen, Y., Teo, J., Lai, J. C. Y., Gunawan, E., Low, K. S., Soh, C. B., et al. (2009). Cooperative communications in ultra-wideband wireless body area networks: channel modeling and system diversity analysis. IEEE Journal on Selected Areas in Communications, 27(1), 5–16.CrossRef
6.
Zurück zum Zitat Ivanov, S., Botvich, D., & Balasubramaniam, S. (2012). Cooperative wireless sensor environments supporting body area networks. IEEE Transactions on Consumer Electronics, 58(2), 0098–3063.CrossRef Ivanov, S., Botvich, D., & Balasubramaniam, S. (2012). Cooperative wireless sensor environments supporting body area networks. IEEE Transactions on Consumer Electronics, 58(2), 0098–3063.CrossRef
7.
Zurück zum Zitat Smith, D. B., Miniutti, D., Lamahewa, T. A., & Hanlen, L. W. (2013). Propagation models for body-area networks: A survey and new outlook. IEEE Antennas and Propagation Magazine, 55(5), 97–117.CrossRef Smith, D. B., Miniutti, D., Lamahewa, T. A., & Hanlen, L. W. (2013). Propagation models for body-area networks: A survey and new outlook. IEEE Antennas and Propagation Magazine, 55(5), 97–117.CrossRef
8.
Zurück zum Zitat Smith, D., Hanlen, L., Zhang, J., Miniutti, D., Rodda, D., & Gilbert, B. (2011). First and second-order statistical characterizations of the dynamic body area propagation channel of various bandwidths. Annals of Telecommunications, 66, 187–203.CrossRef Smith, D., Hanlen, L., Zhang, J., Miniutti, D., Rodda, D., & Gilbert, B. (2011). First and second-order statistical characterizations of the dynamic body area propagation channel of various bandwidths. Annals of Telecommunications, 66, 187–203.CrossRef
9.
Zurück zum Zitat Huang, X., Shan, H., & Shen, X. (2011). On energy efficiency of cooperative communications in wireless body area network. In Proceeding of IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1097–1101). Cancun, Quintana Roo, Mexico: IEEE. Huang, X., Shan, H., & Shen, X. (2011). On energy efficiency of cooperative communications in wireless body area network. In Proceeding of IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1097–1101). Cancun, Quintana Roo, Mexico: IEEE.
10.
Zurück zum Zitat Smith, D. B. & Hanlen, L. W. (2015). Channel modeling for wireless body area networks. In Ultra-Low-Power Short-Range Radios (pp. 25–55). Springer. Smith, D. B. & Hanlen, L. W. (2015). Channel modeling for wireless body area networks. In Ultra-Low-Power Short-Range Radios (pp. 25–55). Springer.
11.
Zurück zum Zitat van Roy, S., Quitin, F., Liu, L., Oestges, C., Horlin, F., Dricot, J. M., et al. (2013). Dynamic channel modeling for multi-sensor body area networks. IEEE Transactions on Antennas and Propagation, 61(4), 2200–2208.CrossRef van Roy, S., Quitin, F., Liu, L., Oestges, C., Horlin, F., Dricot, J. M., et al. (2013). Dynamic channel modeling for multi-sensor body area networks. IEEE Transactions on Antennas and Propagation, 61(4), 2200–2208.CrossRef
12.
Zurück zum Zitat Dong, J., & Smith, D. (2013). Opportunistic relaying in wireless body area networks: Coexistence performance. In Proceeding of IEEE International Conference on Communications (ICC) (pp. 5613–5618). Budapest: Hungary. Dong, J., & Smith, D. (2013). Opportunistic relaying in wireless body area networks: Coexistence performance. In Proceeding of IEEE International Conference on Communications (ICC) (pp. 5613–5618). Budapest: Hungary.
13.
Zurück zum Zitat Smith, D. B., Miniutti, D., & Hanlen, L. W. (2011). Characterization of the body-area propagation channel for monitoring a subject sleeping. IEEE Transactions on Antennas and Propagation, 59(11), 4388–4392.CrossRef Smith, D. B., Miniutti, D., & Hanlen, L. W. (2011). Characterization of the body-area propagation channel for monitoring a subject sleeping. IEEE Transactions on Antennas and Propagation, 59(11), 4388–4392.CrossRef
14.
Zurück zum Zitat Moosavi, H., & Bui, F. M. (2016). Routing over multi-hop fading wireless body area networks with reliability considerations. In Proceeding of 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 4941–4945). Orlando, FL, USA: IEEE. Moosavi, H., & Bui, F. M. (2016). Routing over multi-hop fading wireless body area networks with reliability considerations. In Proceeding of 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 4941–4945). Orlando, FL, USA: IEEE.
15.
Zurück zum Zitat Ibrahim, S. D., Ugweje, O. C., Aibinu, A. M., Koyunlu, G., & Adeshina, S. (2017). Performance of wireless body area network in the presence of multipath and fading. In Proceeding of International Conference on Electronics Computer and Computation (ICECCO) (pp. 1–6). Ibrahim, S. D., Ugweje, O. C., Aibinu, A. M., Koyunlu, G., & Adeshina, S. (2017). Performance of wireless body area network in the presence of multipath and fading. In Proceeding of International Conference on Electronics Computer and Computation (ICECCO) (pp. 1–6).
16.
Zurück zum Zitat Tran, L. C., Mertins, A., Huang, X., & Safaei, F. (2016). Comprehensive performance analysis of fully cooperative communication in WBANs. IEEE Access, 4, 8737–8756.CrossRef Tran, L. C., Mertins, A., Huang, X., & Safaei, F. (2016). Comprehensive performance analysis of fully cooperative communication in WBANs. IEEE Access, 4, 8737–8756.CrossRef
17.
Zurück zum Zitat Razavi, A., & Jahed, M. (2019). Capacity-outage joint analysis and optimal power allocation for wireless body area networks. IEEE Systems Journal, 13(1), 636–646.CrossRef Razavi, A., & Jahed, M. (2019). Capacity-outage joint analysis and optimal power allocation for wireless body area networks. IEEE Systems Journal, 13(1), 636–646.CrossRef
18.
Zurück zum Zitat Amouri, B., Ghanem, K., & Kaddeche, M. (2016). Hybrid relay selection-based scheme for UWB BANs combining MB-OFDM and decode-and-forward cooperative architectures. Electronics Letters, 52(24), 2017–2019.CrossRef Amouri, B., Ghanem, K., & Kaddeche, M. (2016). Hybrid relay selection-based scheme for UWB BANs combining MB-OFDM and decode-and-forward cooperative architectures. Electronics Letters, 52(24), 2017–2019.CrossRef
19.
Zurück zum Zitat Moosavi, H., & Bui, F. M. (2016). Optimal relay selection and power control with quality-of-service provisioning in wireless body area networks. IEEE Transactions on Wireless Communications, 15(8), 5497–5510.CrossRef Moosavi, H., & Bui, F. M. (2016). Optimal relay selection and power control with quality-of-service provisioning in wireless body area networks. IEEE Transactions on Wireless Communications, 15(8), 5497–5510.CrossRef
20.
Zurück zum Zitat Zhang, X., Liu, K., & Tao, L. (2018). A cooperative communication scheme for full-duplex simultaneous wireless information and power transfer wireless body area networks. IEEE Sensors Letters, 2(4), 1–4. Zhang, X., Liu, K., & Tao, L. (2018). A cooperative communication scheme for full-duplex simultaneous wireless information and power transfer wireless body area networks. IEEE Sensors Letters, 2(4), 1–4.
21.
Zurück zum Zitat Liu, H., Hu, F., Qu, S., Li, Z., & Li, D. (2019). Multi-point wireless information and power transfer to maximize sum-throughput in WBAN with energy harvesting. IEEE Internet of Things Journal, 6(4), 7069–7078.CrossRef Liu, H., Hu, F., Qu, S., Li, Z., & Li, D. (2019). Multi-point wireless information and power transfer to maximize sum-throughput in WBAN with energy harvesting. IEEE Internet of Things Journal, 6(4), 7069–7078.CrossRef
22.
Zurück zum Zitat Ramgoolam, K., & Bassoo, V. (2019). Maximising energy efficiency for direct communication links in wireless body area networks. IET Wireless Sensor Systems, 9(1), 32–41.CrossRef Ramgoolam, K., & Bassoo, V. (2019). Maximising energy efficiency for direct communication links in wireless body area networks. IET Wireless Sensor Systems, 9(1), 32–41.CrossRef
23.
Zurück zum Zitat Shimly, S. M., Smith, D. B., & Movassaghi, S. (2019). Experimental analysis of cross-layer optimization for distributed wireless body-to-body networks. IEEE Sensors Journal, 19(24), 12494–12509.CrossRef Shimly, S. M., Smith, D. B., & Movassaghi, S. (2019). Experimental analysis of cross-layer optimization for distributed wireless body-to-body networks. IEEE Sensors Journal, 19(24), 12494–12509.CrossRef
24.
Zurück zum Zitat Van, S. D., Ngo, H. Q., & Cotton, S. L. (2020). Wireless powered wearables using distributed massive MIMO. IEEE Transactions on Communications, 68(4), 2156–2172.CrossRef Van, S. D., Ngo, H. Q., & Cotton, S. L. (2020). Wireless powered wearables using distributed massive MIMO. IEEE Transactions on Communications, 68(4), 2156–2172.CrossRef
25.
Zurück zum Zitat George, E. M., & Jacob, L. (2020). Interference mitigation for coexisting wireless body area networks: Distributed learning solutions. IEEE Access, 8, 24209–24218.CrossRef George, E. M., & Jacob, L. (2020). Interference mitigation for coexisting wireless body area networks: Distributed learning solutions. IEEE Access, 8, 24209–24218.CrossRef
26.
Zurück zum Zitat Cardoso, F. D., Kosz, P. T., Ferreira, M. M., Ambroziak, S. J., & Correia, L. M. (2020). Fast fading characterization for body area networks in circular metallic indoor environments. IEEE Access, 8, 43817–43825.CrossRef Cardoso, F. D., Kosz, P. T., Ferreira, M. M., Ambroziak, S. J., & Correia, L. M. (2020). Fast fading characterization for body area networks in circular metallic indoor environments. IEEE Access, 8, 43817–43825.CrossRef
27.
Zurück zum Zitat Haddad, O., Khalighi, M., Zvanovec, S., & Adel, M. (2020). Channel characterization and modeling for optical wireless body-area networks. IEEE Open Journal of the Communications Society, 1, 760–776.CrossRef Haddad, O., Khalighi, M., Zvanovec, S., & Adel, M. (2020). Channel characterization and modeling for optical wireless body-area networks. IEEE Open Journal of the Communications Society, 1, 760–776.CrossRef
28.
Zurück zum Zitat Kong, P. (2020). Cellular-assisted device-to-device communications for healthcare monitoring wireless body area networks. IEEE Sensors Journal. Kong, P. (2020). Cellular-assisted device-to-device communications for healthcare monitoring wireless body area networks. IEEE Sensors Journal.
29.
Zurück zum Zitat Huang, Z., Cong, Y., Ling, Z., Mao, Z., & Hu, F. (2020). Optimal dynamic resource allocation for multi-point communication in WBAN. IEEE Access, 8, 114153–114161.CrossRef Huang, Z., Cong, Y., Ling, Z., Mao, Z., & Hu, F. (2020). Optimal dynamic resource allocation for multi-point communication in WBAN. IEEE Access, 8, 114153–114161.CrossRef
30.
Zurück zum Zitat Li, S., Hu, F., Xu, Z., Mao, Z., Ling, Z., & Liu, H. (2020). Joint power allocation in classified WBANs with wireless information and power transfer. IEEE Internet of Things Journal. Li, S., Hu, F., Xu, Z., Mao, Z., Ling, Z., & Liu, H. (2020). Joint power allocation in classified WBANs with wireless information and power transfer. IEEE Internet of Things Journal.
31.
Zurück zum Zitat Soleimani-Nasab, E., Matthaiou, M., Ardebilipour, M., & Karagiannidis, G. K. (2013). Two-way AF relaying in the presence of co-channel interference. IEEE Transactions on Communications, 61(8), 3156–3169.CrossRef Soleimani-Nasab, E., Matthaiou, M., Ardebilipour, M., & Karagiannidis, G. K. (2013). Two-way AF relaying in the presence of co-channel interference. IEEE Transactions on Communications, 61(8), 3156–3169.CrossRef
32.
Zurück zum Zitat Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of Integrals, Series and Products, 7th ed., Jeffrey, A. (Ed.), Elsevier Inc.. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of Integrals, Series and Products, 7th ed., Jeffrey, A. (Ed.), Elsevier Inc..
33.
Zurück zum Zitat Mittal, P., & Gupta, K. (1972). An integral involving generalized function of two variables. Proceedings of the Indian Academy of Sciences - Section A, 75(3), 117–123.MathSciNetCrossRef Mittal, P., & Gupta, K. (1972). An integral involving generalized function of two variables. Proceedings of the Indian Academy of Sciences - Section A, 75(3), 117–123.MathSciNetCrossRef
34.
Zurück zum Zitat Peppas, K. (2012). A new formula for the average bit error probability of dualhop amplify-and-forward relaying systems over generalized shadowed fading channels. IEEE Wireless Communications Letters, 1(2), 85–88.CrossRef Peppas, K. (2012). A new formula for the average bit error probability of dualhop amplify-and-forward relaying systems over generalized shadowed fading channels. IEEE Wireless Communications Letters, 1(2), 85–88.CrossRef
35.
Zurück zum Zitat Mathai, A. M., Saxena, R. K., & Haubold, H. J. (2009). The H-function: Theory and Applications. Berlin: Springer.MATH Mathai, A. M., Saxena, R. K., & Haubold, H. J. (2009). The H-function: Theory and Applications. Berlin: Springer.MATH
36.
Zurück zum Zitat Soleimani-Nasab, E., Matthaiou, M., & Ardebilipour, M. (2013). Multi-relay MIMO systems with OSTBC over Nakagami-\(m\) fading channels. IEEE Transactions on Vehicular Technolology, 62(8), 3721–3736.CrossRef Soleimani-Nasab, E., Matthaiou, M., & Ardebilipour, M. (2013). Multi-relay MIMO systems with OSTBC over Nakagami-\(m\) fading channels. IEEE Transactions on Vehicular Technolology, 62(8), 3721–3736.CrossRef
37.
Zurück zum Zitat Simmons, G. F. (1995). Calculus with Analytic Geometry ser. 2nd. New York: McGraw-Hill. Simmons, G. F. (1995). Calculus with Analytic Geometry ser. 2nd. New York: McGraw-Hill.
38.
Zurück zum Zitat Wang, Z., & Giannakis, G. B. (2003). A simple and general parameterization quantifying performance in fading channels. IEEE Transactions on Communications, 51(8), 1389–1398.CrossRef Wang, Z., & Giannakis, G. B. (2003). A simple and general parameterization quantifying performance in fading channels. IEEE Transactions on Communications, 51(8), 1389–1398.CrossRef
40.
Zurück zum Zitat Spiegel, M. R., Lipschutz, S., & Liu, J. (2009). Schaum’s Mathematical Handbook of Formulas and Tables (3rd ed.). New York: M. G. Hill. Spiegel, M. R., Lipschutz, S., & Liu, J. (2009). Schaum’s Mathematical Handbook of Formulas and Tables (3rd ed.). New York: M. G. Hill.
Metadaten
Titel
A Framework on the Performance Analysis of Cooperative Wireless Body Area Networks
verfasst von
Ehsan Soleimani-Nasab
Maryam Abbaspour
Publikationsdatum
21.11.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07893-z

Weitere Artikel der Ausgabe 2/2021

Wireless Personal Communications 2/2021 Zur Ausgabe

Neuer Inhalt