Skip to main content

2024 | OriginalPaper | Buchkapitel

A Fusion Framework of Pre-trained Deep Learning Models for Oral Squamous Cell Carcinoma Classification

verfasst von : Muhammad Attique Khan, Momina Mir, Muhammad Sami Ullah, Ameer Hamza, Kiran Jabeen, Deepak Gupta

Erschienen in: Proceedings of Third International Conference on Computing and Communication Networks

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One of the most serious illnesses in the world is oral cancer, and prompt, effective treatment can significantly increase patient survival and cure rates. The manual diagnosis from Histopathologic Images (HI) is time-consuming and requires an expert doctor. To reduce the burden on a doctor, a computerized technique is helpful for the classification of medical image analysis. In this work, we proposed a deep learning framework for classifying Oral Squamous Cell Carcinoma (OSCC) from HI. Two pre-trained deep learning architectures, MobileNet-V2 and DarkNet-19, have been fine-tuned in the proposed framework. Both architectures have been selected based on recent performance and fewer parameters. Both models were trained using the transfer learning concept and extracted features from the global average pooling layers. A Chaotic Crow Search optimization algorithm has been employed, and the best features have been selected. The selected features are finally classified using machine learning classifiers. A publicly available dataset was utilized for experimental purposes and obtained the highest accuracy of 92%. Compared with some state-of-the-art techniques, the proposed framework shows improved accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rahman, A.-U., Alqahtani, A., Aldhafferi, N., Nasir, M.U., Khan, M.F., Khan, M.A., et al.: Histopathologic oral cancer prediction using oral squamous cell carcinoma biopsy empowered with transfer learning. Sensors 22, 3833 (2022)CrossRef Rahman, A.-U., Alqahtani, A., Aldhafferi, N., Nasir, M.U., Khan, M.F., Khan, M.A., et al.: Histopathologic oral cancer prediction using oral squamous cell carcinoma biopsy empowered with transfer learning. Sensors 22, 3833 (2022)CrossRef
2.
Zurück zum Zitat Ananthakrishnan, B., Shaik, A., Kumar, S., Narendran, S., Mattu, K., Kavitha, M.S.: Automated detection and classification of oral squamous cell carcinoma using deep neural networks. Diagnostics 13, 918 (2023)CrossRef Ananthakrishnan, B., Shaik, A., Kumar, S., Narendran, S., Mattu, K., Kavitha, M.S.: Automated detection and classification of oral squamous cell carcinoma using deep neural networks. Diagnostics 13, 918 (2023)CrossRef
3.
Zurück zum Zitat Ahmad, M., Irfan, M.A., Sadique, U., Haq, I. u., Jan, A., Khattak, M.I., et al.: Multi-method analysis of histopathological image for early diagnosis of oral squamous cell carcinoma using deep learning and hybrid techniques. Cancers 15, 5247 (2023) Ahmad, M., Irfan, M.A., Sadique, U., Haq, I. u., Jan, A., Khattak, M.I., et al.: Multi-method analysis of histopathological image for early diagnosis of oral squamous cell carcinoma using deep learning and hybrid techniques. Cancers 15, 5247 (2023)
4.
Zurück zum Zitat Liyanage, V., Tao, M., Park, J.S., Wang, K.N., Azimi, S.: Malignant and non-malignant oral lesions classification and diagnosis with deep neural networks. J. Dent. 137, 104657 (2023)CrossRef Liyanage, V., Tao, M., Park, J.S., Wang, K.N., Azimi, S.: Malignant and non-malignant oral lesions classification and diagnosis with deep neural networks. J. Dent. 137, 104657 (2023)CrossRef
5.
Zurück zum Zitat Begum, S.H., Vidyullatha, P.: Deep learning model for automatic detection of oral squamous cell carcinoma (OSCC) using Histopathological Images. Int. J. Comput. Digit. Syst. 13 (2023) Begum, S.H., Vidyullatha, P.: Deep learning model for automatic detection of oral squamous cell carcinoma (OSCC) using Histopathological Images. Int. J. Comput. Digit. Syst. 13 (2023)
6.
Zurück zum Zitat Mostafa, R.R., Zhang, Y.-D., Baili, J., Alhaisoni, M., Tariq, U., et al.: Deep-Net: fine-tuned deep neural network multi-features fusion for brain tumor recognition. Comput., Mater. & Contin. 76 (2023) Mostafa, R.R., Zhang, Y.-D., Baili, J., Alhaisoni, M., Tariq, U., et al.: Deep-Net: fine-tuned deep neural network multi-features fusion for brain tumor recognition. Comput., Mater. & Contin. 76 (2023)
7.
Zurück zum Zitat Wang, J., Wang, S., Zhang, Y.: SNSVM: SqueezeNet-guided SVM for breast cancer diagnosis. Comput., Mater. & Contin. 76 (2023) Wang, J., Wang, S., Zhang, Y.: SNSVM: SqueezeNet-guided SVM for breast cancer diagnosis. Comput., Mater. & Contin. 76 (2023)
8.
Zurück zum Zitat Dillshad, V., Nazir, M., Saidani, O., Alturki, N., Kadry, S.: D2LFS2Net: Multi‐class skin lesion diagnosis using deep learning and variance‐controlled Marine Predator optimisation: an application for precision medicine. CAAI Trans. Intell. Technol. (2023) Dillshad, V., Nazir, M., Saidani, O., Alturki, N., Kadry, S.: D2LFS2Net: Multi‐class skin lesion diagnosis using deep learning and variance‐controlled Marine Predator optimisation: an application for precision medicine. CAAI Trans. Intell. Technol. (2023)
9.
Zurück zum Zitat Ijaz, M., Ashraf, I., Zahid, U., Yasin, A., Ali, S., Attique Khan, M., et al.: A decision support system for lung colon cancer classification using fusion of deep neural networks and normal distribution based gray wolf optimization. In: ACM Transactions on Asian and Low-Resource Language Information Processing (2023) Ijaz, M., Ashraf, I., Zahid, U., Yasin, A., Ali, S., Attique Khan, M., et al.: A decision support system for lung colon cancer classification using fusion of deep neural networks and normal distribution based gray wolf optimization. In: ACM Transactions on Asian and Low-Resource Language Information Processing (2023)
10.
Zurück zum Zitat Ali, M.U., Zafar, A., Tanveer, J., Kim, S.H., Alsulami, M.M., et al.: Deep learning network selection and optimized information fusion for enhanced COVID‐19 detection. Int. J. Imaging Syst. Technol. Ali, M.U., Zafar, A., Tanveer, J., Kim, S.H., Alsulami, M.M., et al.: Deep learning network selection and optimized information fusion for enhanced COVID‐19 detection. Int. J. Imaging Syst. Technol.
11.
Zurück zum Zitat Khan, A., Alhaisoni, M., Alqahtani, A., Alsubai, S., Alharbi, M., et al.: Multimodal brain tumor detection and classification using deep saliency map and improved dragonfly optimization algorithm. Int. J. Imaging Syst. Technol. 33, 572–587 (2023)CrossRef Khan, A., Alhaisoni, M., Alqahtani, A., Alsubai, S., Alharbi, M., et al.: Multimodal brain tumor detection and classification using deep saliency map and improved dragonfly optimization algorithm. Int. J. Imaging Syst. Technol. 33, 572–587 (2023)CrossRef
12.
Zurück zum Zitat Figueroa, K.C., Song, B., Sunny, S., Li, S., Gurushanth, K., Mendonca, P., et al.: Interpretable deep learning approach for oral cancer classification using guided attention inference network. J. Biomed. Opt. 27, 015001–015001 (2022)CrossRef Figueroa, K.C., Song, B., Sunny, S., Li, S., Gurushanth, K., Mendonca, P., et al.: Interpretable deep learning approach for oral cancer classification using guided attention inference network. J. Biomed. Opt. 27, 015001–015001 (2022)CrossRef
13.
Zurück zum Zitat Jeyaraj, P.R., Samuel Nadar, E.R.: Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm. J. Cancer Res. Clin. Oncol. 145, 829–837 (2019) Jeyaraj, P.R., Samuel Nadar, E.R.: Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm. J. Cancer Res. Clin. Oncol. 145, 829–837 (2019)
14.
Zurück zum Zitat Al Duhayyim, M., Malibari, A., Dhahbi, S., Nour, M.K., Al-Turaiki, I., Obayya, M.I., et al.: Sailfish optimization with deep learning based oral cancer classification model. Comput. Syst. Sci. Eng., 45, 753–767 (2023) Al Duhayyim, M., Malibari, A., Dhahbi, S., Nour, M.K., Al-Turaiki, I., Obayya, M.I., et al.: Sailfish optimization with deep learning based oral cancer classification model. Comput. Syst. Sci. Eng., 45, 753–767 (2023)
15.
Zurück zum Zitat Welikala, R.A., Remagnino, P., Lim, J.H., Chan, C.S., Rajendran, S., Kallarakkal, T.G., et al.: Automated detection and classification of oral lesions using deep learning for early detection of oral cancer. IEEE Access 8, 132677–132693 (2020)CrossRef Welikala, R.A., Remagnino, P., Lim, J.H., Chan, C.S., Rajendran, S., Kallarakkal, T.G., et al.: Automated detection and classification of oral lesions using deep learning for early detection of oral cancer. IEEE Access 8, 132677–132693 (2020)CrossRef
16.
Zurück zum Zitat Huang, C., Zhang, G., Chen, S., de Albuquerque, V.H.C.: An intelligent multisampling tensor model for oral cancer classification. IEEE Trans. Industr. Inf. 18, 7853–7861 (2022)CrossRef Huang, C., Zhang, G., Chen, S., de Albuquerque, V.H.C.: An intelligent multisampling tensor model for oral cancer classification. IEEE Trans. Industr. Inf. 18, 7853–7861 (2022)CrossRef
17.
Zurück zum Zitat Joshi, P., Alsadoon, O.H., Alsadoon, A., AlSallami, N., Rashid, T.A., Prasad, P., et al.: Deep learning for size and microscope feature extraction and classification in Oral Cancer: enhanced convolution neural network. Multimed. Tools Appl. 82, 6197–6220 (2023)CrossRef Joshi, P., Alsadoon, O.H., Alsadoon, A., AlSallami, N., Rashid, T.A., Prasad, P., et al.: Deep learning for size and microscope feature extraction and classification in Oral Cancer: enhanced convolution neural network. Multimed. Tools Appl. 82, 6197–6220 (2023)CrossRef
18.
Zurück zum Zitat Rahman, T.Y., Mahanta, L.B., Das, A.K., Sarma, J.D.: Histopathological imaging database for oral cancer analysis. Data Brief 29, 105114 (2020)CrossRef Rahman, T.Y., Mahanta, L.B., Das, A.K., Sarma, J.D.: Histopathological imaging database for oral cancer analysis. Data Brief 29, 105114 (2020)CrossRef
19.
Zurück zum Zitat Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017) Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)
20.
Zurück zum Zitat Al-Haija, Q.A., Smadi, M., Al-Bataineh, O.M.: Identifying phasic dopamine releases using DarkNet-19 convolutional neural network. In: 2021 IEEE International IoT, Electronics and Mechatronics Conference (IEMTRONICS), pp. 1–5 (2021) Al-Haija, Q.A., Smadi, M., Al-Bataineh, O.M.: Identifying phasic dopamine releases using DarkNet-19 convolutional neural network. In: 2021 IEEE International IoT, Electronics and Mechatronics Conference (IEMTRONICS), pp. 1–5 (2021)
21.
Zurück zum Zitat Mahum, R., Azim, T.: Proteins Classification Using An Improve Darknet-53 Deep Learning Model. In: 2022 Mohammad Ali Jinnah University International Conference on Computing (MAJICC), pp. 1–6 (2022) Mahum, R., Azim, T.: Proteins Classification Using An Improve Darknet-53 Deep Learning Model. In: 2022 Mohammad Ali Jinnah University International Conference on Computing (MAJICC), pp. 1–6 (2022)
22.
Zurück zum Zitat Choudhry, Z.A., Shahid, H., Aziz, S., Naqvi, S.Z.H., Khan, M.U.: DarkNet-19 Based Intelligent Diagnostic System for Ocular Diseases. Iran. J. Sci. Technol., Trans. Electr. Eng. 46, 959–970 (2022)CrossRef Choudhry, Z.A., Shahid, H., Aziz, S., Naqvi, S.Z.H., Khan, M.U.: DarkNet-19 Based Intelligent Diagnostic System for Ocular Diseases. Iran. J. Sci. Technol., Trans. Electr. Eng. 46, 959–970 (2022)CrossRef
23.
Zurück zum Zitat Sudha, D., BS, S.: An automated system of identifying kidney stones using Darknet-19, a deep learning model in MATLAB. J. Coast. Life Med. 11, 1578–1585 (2023) Sudha, D., BS, S.: An automated system of identifying kidney stones using Darknet-19, a deep learning model in MATLAB. J. Coast. Life Med. 11, 1578–1585 (2023)
24.
Zurück zum Zitat Hamid, Y., Wani, S., Soomro, A.B., Alwan, A.A., Gulzar, Y.: Smart seed classification system based on MobileNetV2 architecture. In: 2022 2nd International Conference on Computing and Information Technology (ICCIT), pp. 217–222 (2022) Hamid, Y., Wani, S., Soomro, A.B., Alwan, A.A., Gulzar, Y.: Smart seed classification system based on MobileNetV2 architecture. In: 2022 2nd International Conference on Computing and Information Technology (ICCIT), pp. 217–222 (2022)
25.
Zurück zum Zitat Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018) Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)
26.
Zurück zum Zitat Akay, M., Du, Y., Sershen, C.L., Wu, M., Chen, T.Y., Assassi, S., et al.: Deep learning classification of systemic sclerosis skin using the MobileNetV2 model. IEEE Open J. Eng. Med. Biol. 2, 104–110 (2021)CrossRef Akay, M., Du, Y., Sershen, C.L., Wu, M., Chen, T.Y., Assassi, S., et al.: Deep learning classification of systemic sclerosis skin using the MobileNetV2 model. IEEE Open J. Eng. Med. Biol. 2, 104–110 (2021)CrossRef
27.
Zurück zum Zitat Knapheide, J., Stabernack, B., Kuhnke, M.: A high throughput MobileNetV2 FPGA implementation based on a flexible architecture for depthwise separable convolution. In: 2020 30th International Conference on Field-Programmable Logic and Applications (FPL), pp. 277–283 (2020) Knapheide, J., Stabernack, B., Kuhnke, M.: A high throughput MobileNetV2 FPGA implementation based on a flexible architecture for depthwise separable convolution. In: 2020 30th International Conference on Field-Programmable Logic and Applications (FPL), pp. 277–283 (2020)
28.
Zurück zum Zitat Dong, K., Zhou, C., Ruan, Y., Li, Y.: MobileNetV2 model for image classification. In: 2020 2nd International Conference on Information Technology and Computer Application (ITCA), pp 476–480 (2020) Dong, K., Zhou, C., Ruan, Y., Li, Y.: MobileNetV2 model for image classification. In: 2020 2nd International Conference on Information Technology and Computer Application (ITCA), pp 476–480 (2020)
29.
Zurück zum Zitat Sheikh, S., Qidwai, U.: Using MobileNetV2 to classify the severity of diabetic retinopathy. Int. J. Simul. Syst. Sci. Technol 21 (2020) Sheikh, S., Qidwai, U.: Using MobileNetV2 to classify the severity of diabetic retinopathy. Int. J. Simul. Syst. Sci. Technol 21 (2020)
30.
Zurück zum Zitat Takeda, K., Takahashi, N., Izawa, E.-I.: Social encounters produce different autonomic response between dominants and subordinates in crows. R. Soc. Open Sci. 9, 220972 (2022)CrossRef Takeda, K., Takahashi, N., Izawa, E.-I.: Social encounters produce different autonomic response between dominants and subordinates in crows. R. Soc. Open Sci. 9, 220972 (2022)CrossRef
31.
Zurück zum Zitat Adamu, A., Abdullahi, M., Junaidu, S.B., Hassan, I.H.: An hybrid particle swarm optimization with crow search algorithm for feature selection. Mach. Learn. Appl. 6, 100108 (2021) Adamu, A., Abdullahi, M., Junaidu, S.B., Hassan, I.H.: An hybrid particle swarm optimization with crow search algorithm for feature selection. Mach. Learn. Appl. 6, 100108 (2021)
Metadaten
Titel
A Fusion Framework of Pre-trained Deep Learning Models for Oral Squamous Cell Carcinoma Classification
verfasst von
Muhammad Attique Khan
Momina Mir
Muhammad Sami Ullah
Ameer Hamza
Kiran Jabeen
Deepak Gupta
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_60