Skip to main content
Erschienen in:

01.07.2024 | Original Paper

A fuzzy cloud theory-based stochastic model for multi-carrier energy hubs in grid-connected and islanded operations

verfasst von: Anas Quteishat, Mahmoud A. Younis, Amin Safari, Alireza Jahangiri

Erschienen in: Electrical Engineering | Ausgabe 1/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The energy hub (EH), which is a crucial component of multi-energy systems, plays a significant role in increasing flexibility and reliability. Due to the interaction of various energies, the unpredictability of renewable energy sources, energy prices, and consumer demands, the optimal operation of EHs presents a considerable challenge for operators. In this study, networked EH takes in a variety of energy sources, including electricity, gas, and wind, and after conversion, storage, direct connection, or shifting of demands, it supplies the hub’s essential demands. In a predictable and stochastic environment, the EH is operated optimally based on an objective function that takes into account economic, greenhouse gas emission, and reliability parameters. An intelligent strategy based on fuzzy cloud theory is utilized to develop an entropy–entropy concept for its work in order to reflect the impact of uncertainties in the challenge. In both grid-connected and island-based operations, the cost of operating networked EHs is modeled as a MILP optimization problem with demand response programs and reliability restrictions. Finally, the effectiveness of various modes in enhancing the reliability and flexibility of energy systems in accordance with the optimal schedule for EHs is proven by modeling the suggested scheme on a sample test system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ahčin P, Šikić M (2010) Simulating demand response and energy storage in energy distribution systems, International conference on power system technology, pp. 1–7 Ahčin P, Šikić M (2010) Simulating demand response and energy storage in energy distribution systems, International conference on power system technology, pp. 1–7
2.
Zurück zum Zitat Ahmad T, Zhang D (2021) Renewable energy integration/techno-economic feasibility analysis, cost/benefit impact on islanded and grid-connected operations: a case study. Renewable Energy 180:83–108CrossRefMATH Ahmad T, Zhang D (2021) Renewable energy integration/techno-economic feasibility analysis, cost/benefit impact on islanded and grid-connected operations: a case study. Renewable Energy 180:83–108CrossRefMATH
3.
Zurück zum Zitat Azimi M, Salami A (2021) A new approach on quantification of flexibility index in multi-carrier energy systems towards optimally energy hub management. Energy 232:120973CrossRefMATH Azimi M, Salami A (2021) A new approach on quantification of flexibility index in multi-carrier energy systems towards optimally energy hub management. Energy 232:120973CrossRefMATH
4.
Zurück zum Zitat Brahman F, Honarmand M, Jadid S (2015) Optimal electrical and thermal energy management of a residential energy hub, integrating demand response and energy storage system. Energy Build 90:65–75CrossRefMATH Brahman F, Honarmand M, Jadid S (2015) Optimal electrical and thermal energy management of a residential energy hub, integrating demand response and energy storage system. Energy Build 90:65–75CrossRefMATH
5.
Zurück zum Zitat Bahmani R, Karimi H, Jadid S (2021) Cooperative energy management of multi-energy hub systems considering demand response programs and ice storage. Int J Electr Power Energy Syst 130:106904CrossRefMATH Bahmani R, Karimi H, Jadid S (2021) Cooperative energy management of multi-energy hub systems considering demand response programs and ice storage. Int J Electr Power Energy Syst 130:106904CrossRefMATH
6.
Zurück zum Zitat Bashir AA, Pourakbari-Kasmaei M, Contreras J, Lehtonen M (2019) A novel energy scheduling framework for reliable and economic operation of islanded and grid-connected microgrids. Electric Power Syst Res 171:85–96CrossRef Bashir AA, Pourakbari-Kasmaei M, Contreras J, Lehtonen M (2019) A novel energy scheduling framework for reliable and economic operation of islanded and grid-connected microgrids. Electric Power Syst Res 171:85–96CrossRef
7.
Zurück zum Zitat Batić M, Tomašević N, Beccuti G, Demiray T, Vraneš, (2016) Combined energy hub optimisation and demand side management for buildings. Energy and Build 127:229–241CrossRef Batić M, Tomašević N, Beccuti G, Demiray T, Vraneš, (2016) Combined energy hub optimisation and demand side management for buildings. Energy and Build 127:229–241CrossRef
8.
Zurück zum Zitat Cappers P, Goldman C, Kathan D (2010) Demand response in U.S. electricity markets: empirical evidence. Energy 35(4):1526–1535CrossRef Cappers P, Goldman C, Kathan D (2010) Demand response in U.S. electricity markets: empirical evidence. Energy 35(4):1526–1535CrossRef
9.
Zurück zum Zitat Dini A, Hassankashi A, Pirouzi S, Lehtonen M, Arandian B, Baziar AA (2022) A flexible-reliable operation optimization model of the networked energy hubs with distributed generations, energy storage systems and demand response. Energy 239:121923CrossRef Dini A, Hassankashi A, Pirouzi S, Lehtonen M, Arandian B, Baziar AA (2022) A flexible-reliable operation optimization model of the networked energy hubs with distributed generations, energy storage systems and demand response. Energy 239:121923CrossRef
10.
Zurück zum Zitat Ghanbari A, Karimi H, Jadid S (2020) Optimal planning and operation of multi-carrier networked microgrids considering multi-energy hubs in distribution networks. Energy 204:117936CrossRef Ghanbari A, Karimi H, Jadid S (2020) Optimal planning and operation of multi-carrier networked microgrids considering multi-energy hubs in distribution networks. Energy 204:117936CrossRef
11.
Zurück zum Zitat Geidl M, Koeppel G, Favre-Perrod P, Klockl B, Andersson G, Frohlich K (2007) Energy hubs for the future. IEEE Power Energy Mag 5(1):24–30CrossRef Geidl M, Koeppel G, Favre-Perrod P, Klockl B, Andersson G, Frohlich K (2007) Energy hubs for the future. IEEE Power Energy Mag 5(1):24–30CrossRef
12.
Zurück zum Zitat Grossmann IE, Halemane KP, Swaney RE (1983) Optimization strategies for flexible chemical processes. Comput Chem Eng 7:439–462CrossRefMATH Grossmann IE, Halemane KP, Swaney RE (1983) Optimization strategies for flexible chemical processes. Comput Chem Eng 7:439–462CrossRefMATH
13.
Zurück zum Zitat Heidari A, Mortazavi SS, Bansal RC (2020) Stochastic effects of ice storage on improvement of an energy hub optimal operation including demand response and renewable energies. Appl Energy 261:114393CrossRef Heidari A, Mortazavi SS, Bansal RC (2020) Stochastic effects of ice storage on improvement of an energy hub optimal operation including demand response and renewable energies. Appl Energy 261:114393CrossRef
14.
Zurück zum Zitat Karuppiah R, Martín M, Grossmann IE (2010) A simple heuristic for reducing the number of scenarios in two-stage stochastic programming. Comput Chem Eng 34(8):1246–1255CrossRefMATH Karuppiah R, Martín M, Grossmann IE (2010) A simple heuristic for reducing the number of scenarios in two-stage stochastic programming. Comput Chem Eng 34(8):1246–1255CrossRefMATH
15.
Zurück zum Zitat La Scala M, Vaccaro A, Zobaa AF (2014) A goal programming methodology for multiobjective optimization of distributed energy hubs operation. Appl Therm Eng 71(2):658–666CrossRef La Scala M, Vaccaro A, Zobaa AF (2014) A goal programming methodology for multiobjective optimization of distributed energy hubs operation. Appl Therm Eng 71(2):658–666CrossRef
16.
Zurück zum Zitat Li R, SaeidNahaei S (2022) Optimal operation of energy hubs integrated with electric vehicles, load management, combined heat and power unit and renewable energy sources. J Energy Storage 48:103822CrossRefMATH Li R, SaeidNahaei S (2022) Optimal operation of energy hubs integrated with electric vehicles, load management, combined heat and power unit and renewable energy sources. J Energy Storage 48:103822CrossRefMATH
17.
Zurück zum Zitat Mansouri SA, Ahmarinejad A, Sheidaei F, Javadi MS, Jordehi AR, Nezhad AE, Catalao JP (2022) A multi-stage joint planning and operation model for energy hubs considering integrated demand response programs. Int J Electr Power Energy Syst 140:108103CrossRef Mansouri SA, Ahmarinejad A, Sheidaei F, Javadi MS, Jordehi AR, Nezhad AE, Catalao JP (2022) A multi-stage joint planning and operation model for energy hubs considering integrated demand response programs. Int J Electr Power Energy Syst 140:108103CrossRef
18.
Zurück zum Zitat Mirzapour-Kamanaj A, Majidi M, Zare K, Kazemzadeh R (2020) Optimal strategic coordination of distribution networks and interconnected energy hubs: a linear multi-follower bi-level optimization model. Int J Electr Power Energy Syst 119:105925CrossRef Mirzapour-Kamanaj A, Majidi M, Zare K, Kazemzadeh R (2020) Optimal strategic coordination of distribution networks and interconnected energy hubs: a linear multi-follower bi-level optimization model. Int J Electr Power Energy Syst 119:105925CrossRef
19.
Zurück zum Zitat Moghaddam MP, Abdollahi A, Rashidinejad M (2011) Flexible demand response programs modeling in competitive electricity markets. Appl Energy 88(9):3257–3269CrossRefMATH Moghaddam MP, Abdollahi A, Rashidinejad M (2011) Flexible demand response programs modeling in competitive electricity markets. Appl Energy 88(9):3257–3269CrossRefMATH
20.
Zurück zum Zitat Mohamed MA, Abdullah HM, El-Meligy MA, Sharaf M, Soliman AT, Hajjiah A (2021) A novel fuzzy cloud stochastic framework for energy management of renewable microgrids based on maximum deployment of electric vehicles. Int J Electr Power Energy Syst 129:106845CrossRef Mohamed MA, Abdullah HM, El-Meligy MA, Sharaf M, Soliman AT, Hajjiah A (2021) A novel fuzzy cloud stochastic framework for energy management of renewable microgrids based on maximum deployment of electric vehicles. Int J Electr Power Energy Syst 129:106845CrossRef
21.
Zurück zum Zitat Morales JM, Perez-Ruiz J (2007) Point estimate schemes to solve the probabilistic power flow. IEEE Trans Power Syst 22(4):1594–1601CrossRefMATH Morales JM, Perez-Ruiz J (2007) Point estimate schemes to solve the probabilistic power flow. IEEE Trans Power Syst 22(4):1594–1601CrossRefMATH
22.
Zurück zum Zitat Nasir M, Jordehi AR, Tostado-Veliz M, Tabar VS, Mansouri SA, Jurado F (2022) Operation of energy hubs with storage systems, solar, wind and biomass units connected to demand response aggregators. Sustain Cities Soc 83:103974CrossRef Nasir M, Jordehi AR, Tostado-Veliz M, Tabar VS, Mansouri SA, Jurado F (2022) Operation of energy hubs with storage systems, solar, wind and biomass units connected to demand response aggregators. Sustain Cities Soc 83:103974CrossRef
23.
Zurück zum Zitat Paktinat M, Amirahmadi M, Tolou-Askari M, Mousavizadeh F (2022) Optimal resilient operation of hub energy system considering uncertain parameters. Sustain Energy Grids Netw 30:100618CrossRef Paktinat M, Amirahmadi M, Tolou-Askari M, Mousavizadeh F (2022) Optimal resilient operation of hub energy system considering uncertain parameters. Sustain Energy Grids Netw 30:100618CrossRef
24.
Zurück zum Zitat Parhoudeh S, Baziar A, Mazareie A, Kavousi-Fard A (2016) A novel stochastic framework based on fuzzy cloud theory for modeling uncertainty in the micro-grids. Electr Power Energy Syst 80:73–80CrossRefMATH Parhoudeh S, Baziar A, Mazareie A, Kavousi-Fard A (2016) A novel stochastic framework based on fuzzy cloud theory for modeling uncertainty in the micro-grids. Electr Power Energy Syst 80:73–80CrossRefMATH
25.
Zurück zum Zitat Parisio A, Del Vecchio C, Vaccaro A (2012) A robust optimization approach to energy hub management. Int J Electr Power Energy Syst 42(1):98–104CrossRefMATH Parisio A, Del Vecchio C, Vaccaro A (2012) A robust optimization approach to energy hub management. Int J Electr Power Energy Syst 42(1):98–104CrossRefMATH
26.
Zurück zum Zitat Pathak KP, Yadav AK (2023) Fuzzy assisted optimal tilt control approach for LFC of renewable dominated micro-grid: a step towards grid decarbonization. Sustain Energy Technol Assess 60:103551MATH Pathak KP, Yadav AK (2023) Fuzzy assisted optimal tilt control approach for LFC of renewable dominated micro-grid: a step towards grid decarbonization. Sustain Energy Technol Assess 60:103551MATH
27.
Zurück zum Zitat Pazouki S, Haghifam M-R, Moser A (2014) Uncertainty modeling in optimal operation of energy hub in presence of wind, storage and demand response. Int J Electr Power Energy Syst 61:335–345CrossRef Pazouki S, Haghifam M-R, Moser A (2014) Uncertainty modeling in optimal operation of energy hub in presence of wind, storage and demand response. Int J Electr Power Energy Syst 61:335–345CrossRef
28.
Zurück zum Zitat Pazouki S, Haghifam MR (2016) Optimal planning and scheduling of energy hub in presence of wind, storage and demand response under uncertainty. Int J Electr Power Energy Syst 80:219–239CrossRefMATH Pazouki S, Haghifam MR (2016) Optimal planning and scheduling of energy hub in presence of wind, storage and demand response under uncertainty. Int J Electr Power Energy Syst 80:219–239CrossRefMATH
29.
Zurück zum Zitat Pezhmani Y, Oskouei MZ, Rezaei N, Mehrjerdi H (2022) A centralized stochastic optimal dispatching strategy of networked multi-carrier microgrids considering transactive energy and integrated demand response: application to water–energy nexus. Sustain Energy, Grids Netw 31:100751CrossRef Pezhmani Y, Oskouei MZ, Rezaei N, Mehrjerdi H (2022) A centralized stochastic optimal dispatching strategy of networked multi-carrier microgrids considering transactive energy and integrated demand response: application to water–energy nexus. Sustain Energy, Grids Netw 31:100751CrossRef
30.
Zurück zum Zitat Qin K, Xu K, Liu F, Li D (2011) Image segmentation based on histogram analysis utilizing the cloud model. Comput Math Appl 62:2824–2833CrossRefMATH Qin K, Xu K, Liu F, Li D (2011) Image segmentation based on histogram analysis utilizing the cloud model. Comput Math Appl 62:2824–2833CrossRefMATH
31.
Zurück zum Zitat Rahmatian MR, Shamim AG, Bahramara S (2021) Optimal operation of the energy hubs in the islanded multi-carrier energy system using Cournot model. Appl Therm Eng 191:116837CrossRefMATH Rahmatian MR, Shamim AG, Bahramara S (2021) Optimal operation of the energy hubs in the islanded multi-carrier energy system using Cournot model. Appl Therm Eng 191:116837CrossRefMATH
32.
Zurück zum Zitat Rezaee Jordehi A (2022) Two-stage stochastic programming for risk-aware scheduling of energy hubs participating in day-ahead and real-time electricity markets. Sustain Cities Soc 81:103823CrossRefMATH Rezaee Jordehi A (2022) Two-stage stochastic programming for risk-aware scheduling of energy hubs participating in day-ahead and real-time electricity markets. Sustain Cities Soc 81:103823CrossRefMATH
33.
Zurück zum Zitat Salehimaleh M, Akbarimajd A, Dejamkhooy A (2022) A shrinking-horizon optimization framework for energy hub scheduling in the presence of wind turbine and integrated demand response program. Sustain Cities Soc 79:103689CrossRef Salehimaleh M, Akbarimajd A, Dejamkhooy A (2022) A shrinking-horizon optimization framework for energy hub scheduling in the presence of wind turbine and integrated demand response program. Sustain Cities Soc 79:103689CrossRef
34.
Zurück zum Zitat Schellenberg A, Rosehart W, Aguado J. Cumulant (2004) based probabilistic optimal power flow (P-OPF). In: Proc int conf probabilistic methods applied power systems; September pp. 506–11 Schellenberg A, Rosehart W, Aguado J. Cumulant (2004) based probabilistic optimal power flow (P-OPF). In: Proc int conf probabilistic methods applied power systems; September pp. 506–11
35.
Zurück zum Zitat Shabanpour-Haghighi A, Karimaghaei M (2021) An overview on multi-carrier energy networks: From a concept to future trends and challenges. International Journal of Hydrogen Energy. Shabanpour-Haghighi A, Karimaghaei M (2021) An overview on multi-carrier energy networks: From a concept to future trends and challenges. International Journal of Hydrogen Energy.
36.
Zurück zum Zitat Shahrabi E, Hakimi SM, Hasankhani A, Derakhshan G, Abdi B (2021) Developing optimal energy management of energy hub in the presence of stochastic renewable energy resources. Sustain Energy, Grids Netw 26:100428CrossRef Shahrabi E, Hakimi SM, Hasankhani A, Derakhshan G, Abdi B (2021) Developing optimal energy management of energy hub in the presence of stochastic renewable energy resources. Sustain Energy, Grids Netw 26:100428CrossRef
37.
Zurück zum Zitat Tiwari S, Singh JG (2022) Optimal energy management of multi-carrier networked energy hubs considering efficient integration of demand response and electrical vehicles: a cooperative energy management framework. J Energy Storage 51:104479CrossRefMATH Tiwari S, Singh JG (2022) Optimal energy management of multi-carrier networked energy hubs considering efficient integration of demand response and electrical vehicles: a cooperative energy management framework. J Energy Storage 51:104479CrossRefMATH
38.
Zurück zum Zitat Thang VV, Ha T, Li Q, Zhang Y (2022) Stochastic optimization in multi-energy hub system operation considering solar energy resource and demand response. Int J Electr Power Energy Syst 141:108132CrossRef Thang VV, Ha T, Li Q, Zhang Y (2022) Stochastic optimization in multi-energy hub system operation considering solar energy resource and demand response. Int J Electr Power Energy Syst 141:108132CrossRef
39.
Zurück zum Zitat Yang H, Xiong T, Qiu J, Qiu D, Dong Z (2016) Optimal operation of DES/CCHP based regional multi-energy prosumer with demand response. Appl Energy 167:353–365CrossRefMATH Yang H, Xiong T, Qiu J, Qiu D, Dong Z (2016) Optimal operation of DES/CCHP based regional multi-energy prosumer with demand response. Appl Energy 167:353–365CrossRefMATH
40.
Zurück zum Zitat Zhang Q (1993) A method dealing with correlations in uncertainty propagation by using traditional correlation coefficients. Reliab Eng Syst Saf 41:107–114CrossRefMATH Zhang Q (1993) A method dealing with correlations in uncertainty propagation by using traditional correlation coefficients. Reliab Eng Syst Saf 41:107–114CrossRefMATH
Metadaten
Titel
A fuzzy cloud theory-based stochastic model for multi-carrier energy hubs in grid-connected and islanded operations
verfasst von
Anas Quteishat
Mahmoud A. Younis
Amin Safari
Alireza Jahangiri
Publikationsdatum
01.07.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 1/2025
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-024-02555-w