Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.10.2015 | Methodologies and Application | Ausgabe 10/2015

Soft Computing 10/2015

A fuzzy logic controller applied to a diversity-based multi-objective evolutionary algorithm for single-objective optimisation

Zeitschrift:
Soft Computing > Ausgabe 10/2015
Autoren:
Eduardo Segredo, Carlos Segura, Coromoto León, Emma Hart
Wichtige Hinweise
Communicated by V. Loia.

Electronic supplementary material

The online version of this article (doi:10.​1007/​s00500-014-1454-y) contains supplementary material, which is available to authorized users.

Abstract

In recent years, Multi-Objective Evolutionary Algorithms (moeas) that consider diversity as an objective have been used to tackle single-objective optimisation problems. The ability to deal with premature convergence has been greatly improved with these schemes. However, they usually increase the number of free parameters that need to be tuned. To improve results and avoid the tedious hand-tuning of algorithms, the use of automated parameter control approaches that are able to adapt parameter values during the course of an evolutionary run are becoming more common in the field of Evolutionary Computation (ec). This research focuses on the application of parameter control approaches to diversity-based moeas. Two external parameter control methods are investigated; a novel method based on Fuzzy Logic and a recently proposed Hyper-heuristic. These are compared to an internal control method that uses self-adaptation. An extensive comparison of the three methods is carried out using a set of single-objective benchmark problems of diverse complexity. Analyses include comparisons to a wide range of schemes with fixed parameters and to a single-objective approach. The results show that the fuzzy logic and hyper-heuristic methods are able to find similar or better solutions than the fixed parameter methods for a significant number of problems, with considerable savings in computational resources and time, whereas the self-adaptive strategy provides little benefit. Finally, we also demonstrate that the controlled diversity-based moea  outperforms the single-objective scheme in most cases, thus showing the benefits of solving single-objective problems through diversity-based multi-objective schemes.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Zusatzmaterial
ESM 1 (PDF 55 kb)
500_2014_1454_MOESM1_ESM.pdf
ESM 1 (PDF 106 kb)
500_2014_1454_MOESM2_ESM.pdf
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 10/2015

Soft Computing 10/2015 Zur Ausgabe

Premium Partner

    Bildnachweise