Skip to main content
Erschienen in: Journal of Computational Electronics 3/2016

07.06.2016

A Gaussian model for recombination via carrier-trap distributions in organic solar cells

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

So far, the model and the number of parameters that have been used in the literature to describe the recombination mechanism in an organic semiconductor depend on the type of trap distribution assumed. Because using only one particular recombination model could be relevant for the design of a computer algorithm to simulate organic devices, in this work, we analyze and validate a function that could be considered to be a generalization of the classic model of the recombination process via carrier-traps. Our proposal is based on Shockley–Read–Hall model which is extended to include traps in the energy continuum. We show that a Gaussian function could be set through physical parameters to approximate the most common trap distributions in the band gap such as an exponential distribution and traps in a single energy level. The application of this model for the determination of the current density–voltage characteristics of organic solar cells under illumination and in the dark is also demonstrated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J.: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995)CrossRef Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J.: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995)CrossRef
2.
Zurück zum Zitat Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 47). Prog. Photovolt: Res. Appl. 24, 3–11 (2015)CrossRef Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 47). Prog. Photovolt: Res. Appl. 24, 3–11 (2015)CrossRef
3.
Zurück zum Zitat Deibel, C., Dyakonov, V.: Polymer-fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 73, 096401 (2010)CrossRef Deibel, C., Dyakonov, V.: Polymer-fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 73, 096401 (2010)CrossRef
4.
Zurück zum Zitat Kuik, M., Koster, L.J.A., Wetzelaer, G.A.H., Blom, P.W.M.: Trap-assisted recombination in disordered organic semiconductors. Phys. Rev. Lett. 107, 256805 (2011)CrossRef Kuik, M., Koster, L.J.A., Wetzelaer, G.A.H., Blom, P.W.M.: Trap-assisted recombination in disordered organic semiconductors. Phys. Rev. Lett. 107, 256805 (2011)CrossRef
5.
Zurück zum Zitat Kirchartz, T., Pieters, B.E., Kirkpatrick, J., Rau, U., Nelson, J.: Recombination via tail states in polythiophene:fullerene solar cells. Phys. Rev. B 83, 115209 (2011)CrossRef Kirchartz, T., Pieters, B.E., Kirkpatrick, J., Rau, U., Nelson, J.: Recombination via tail states in polythiophene:fullerene solar cells. Phys. Rev. B 83, 115209 (2011)CrossRef
6.
Zurück zum Zitat MacKenzie, R., Kirchartz, T., Dibb, G.F.A., Nelson, J.: Modeling nongeminate recombination in P3HT:PCBM solar cells. J. Phys. Chem. C 115, 9806–9813 (2011)CrossRef MacKenzie, R., Kirchartz, T., Dibb, G.F.A., Nelson, J.: Modeling nongeminate recombination in P3HT:PCBM solar cells. J. Phys. Chem. C 115, 9806–9813 (2011)CrossRef
7.
Zurück zum Zitat Zhou, S., Sun, J., Zhou, C., Deng, Z.: Comparison of recombination models in organic bulk heterojunction solar cells. Phys. B 415, 28–33 (2013)CrossRef Zhou, S., Sun, J., Zhou, C., Deng, Z.: Comparison of recombination models in organic bulk heterojunction solar cells. Phys. B 415, 28–33 (2013)CrossRef
8.
Zurück zum Zitat Hawks, S.A., Li, G., Yang, Y., Street, R.A.: Band tail recombination in polymer:fullerene organic solar cells. J. Appl. Phys. 116, 074503 (2014) Hawks, S.A., Li, G., Yang, Y., Street, R.A.: Band tail recombination in polymer:fullerene organic solar cells. J. Appl. Phys. 116, 074503 (2014)
9.
Zurück zum Zitat Hernandez, L.F., Cabrera, V., Resendiz, L.M.: Influence of the recombination mechanism via band tails on the electric performance of a bulk heterojunction solar cell. In: 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) (2014) Hernandez, L.F., Cabrera, V., Resendiz, L.M.: Influence of the recombination mechanism via band tails on the electric performance of a bulk heterojunction solar cell. In: 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) (2014)
10.
Zurück zum Zitat Nicolai, H.T., Mandoc, M.M., Blom, P.W.M.: Electron traps in semiconducting polymers: exponential versus Gaussian trap distribution. Phys. Rev. B 83, 195204 (2011)CrossRef Nicolai, H.T., Mandoc, M.M., Blom, P.W.M.: Electron traps in semiconducting polymers: exponential versus Gaussian trap distribution. Phys. Rev. B 83, 195204 (2011)CrossRef
11.
Zurück zum Zitat Nicolai, H.T., Kuik, M., Wetzelaer, G.A.H., de Boer, B., Campbell, C., Risko, C., Brédas, J.L., Blom, P.W.M.: Unification of trap-limited electron transport in semiconducting polymers. Nat. Mater. 11, 882–887 (2012)CrossRef Nicolai, H.T., Kuik, M., Wetzelaer, G.A.H., de Boer, B., Campbell, C., Risko, C., Brédas, J.L., Blom, P.W.M.: Unification of trap-limited electron transport in semiconducting polymers. Nat. Mater. 11, 882–887 (2012)CrossRef
12.
Zurück zum Zitat Garcia-Belmonte, G.: Carrier recombination flux in bulk heterojunction polymer:fullerene solar cells: effect of energy disorder on ideality factor. Solid State Electron. 79, 201–205 (2013)CrossRef Garcia-Belmonte, G.: Carrier recombination flux in bulk heterojunction polymer:fullerene solar cells: effect of energy disorder on ideality factor. Solid State Electron. 79, 201–205 (2013)CrossRef
13.
Zurück zum Zitat Sah, R.-Y., Noyce, R.N., Shockley, W.: Carrier generation and recombination in pn junctions and pn junction characteristics. Proc. IRE 45, 1228–1243 (1957)CrossRef Sah, R.-Y., Noyce, R.N., Shockley, W.: Carrier generation and recombination in pn junctions and pn junction characteristics. Proc. IRE 45, 1228–1243 (1957)CrossRef
16.
Zurück zum Zitat Baranovskii, S.D.: Theoretical description of charge transport in disordered organic semiconductors. Phys. Status Solidi B 251, 487–525 (2014)CrossRef Baranovskii, S.D.: Theoretical description of charge transport in disordered organic semiconductors. Phys. Status Solidi B 251, 487–525 (2014)CrossRef
17.
Zurück zum Zitat Koster, L.J.A., Smits, E.C.P., Mihailetchi, V.D., Blom, P.W.M.: Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys. Rev. B 72, 085205 (2005)CrossRef Koster, L.J.A., Smits, E.C.P., Mihailetchi, V.D., Blom, P.W.M.: Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys. Rev. B 72, 085205 (2005)CrossRef
18.
Zurück zum Zitat Hwang, I., McNeill, C.R., Greenham, N.C.: Drift-diffusion modeling of photocurrent transients in bulk heterojunction solar cells. J. Appl. Phys. 106, 094506 (2009)CrossRef Hwang, I., McNeill, C.R., Greenham, N.C.: Drift-diffusion modeling of photocurrent transients in bulk heterojunction solar cells. J. Appl. Phys. 106, 094506 (2009)CrossRef
19.
Zurück zum Zitat Häusermann, R., Knapp, E., Moos, M., Reinke, N.A., Flatz, T., Ruhstaller, B.: Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: parameter extraction and sensitivity analysis. J. Appl. Phys. 106, 104507 (2009)CrossRef Häusermann, R., Knapp, E., Moos, M., Reinke, N.A., Flatz, T., Ruhstaller, B.: Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: parameter extraction and sensitivity analysis. J. Appl. Phys. 106, 104507 (2009)CrossRef
20.
Zurück zum Zitat Knapp, E., Häusermann, R., Schwarzenbach, H.U., Ruhstaller, B.: Numerical simulation of charge transport in disordered organic semiconductor devices. J. Appl. Phys. 108, 054504 (2010)CrossRef Knapp, E., Häusermann, R., Schwarzenbach, H.U., Ruhstaller, B.: Numerical simulation of charge transport in disordered organic semiconductor devices. J. Appl. Phys. 108, 054504 (2010)CrossRef
21.
Zurück zum Zitat Lianga, C., Wanga, Y., Lib, D., Jib, X., Zhanga, F., Hea, Z.: Modeling and simulation of bulk heterojunction polymer solar cells. Sol. Energy Mater. Sol. Cells 127, 67–86 (2014)CrossRef Lianga, C., Wanga, Y., Lib, D., Jib, X., Zhanga, F., Hea, Z.: Modeling and simulation of bulk heterojunction polymer solar cells. Sol. Energy Mater. Sol. Cells 127, 67–86 (2014)CrossRef
22.
Zurück zum Zitat Hernández-García, L.F., Cabrera-Arenas, V., Reséndiz-Mendoza, L.M.: On the convergence of the algorithm for simulating organic solar cells. Comput. Phys. Comm. 196, 372–379 (2015)CrossRef Hernández-García, L.F., Cabrera-Arenas, V., Reséndiz-Mendoza, L.M.: On the convergence of the algorithm for simulating organic solar cells. Comput. Phys. Comm. 196, 372–379 (2015)CrossRef
23.
Zurück zum Zitat Garcia-Belmonte, G.: Temperature dependence of open-circuit voltage in organic solar cells from generation-recombination kinetic balance. Sol. Energy Mater. Sol. Cells 94, 2166–2169 (2010)CrossRef Garcia-Belmonte, G.: Temperature dependence of open-circuit voltage in organic solar cells from generation-recombination kinetic balance. Sol. Energy Mater. Sol. Cells 94, 2166–2169 (2010)CrossRef
24.
Zurück zum Zitat Koster, L.J.A., Mihailetchi, V.D., Blom, P.W.M.: Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 88, 052104 (2006)CrossRef Koster, L.J.A., Mihailetchi, V.D., Blom, P.W.M.: Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 88, 052104 (2006)CrossRef
25.
Zurück zum Zitat Ansari-Rad, M., Garcia-Belmonte, G., Bisquert, J.: Consistent formulation of the crossover from density to velocity dependent recombination in organic solar cells. Appl. Phys. Lett. 107, 073301 (2015)CrossRef Ansari-Rad, M., Garcia-Belmonte, G., Bisquert, J.: Consistent formulation of the crossover from density to velocity dependent recombination in organic solar cells. Appl. Phys. Lett. 107, 073301 (2015)CrossRef
Metadaten
Titel
A Gaussian model for recombination via carrier-trap distributions in organic solar cells
Publikationsdatum
07.06.2016
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2016
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0835-0

Weitere Artikel der Ausgabe 3/2016

Journal of Computational Electronics 3/2016 Zur Ausgabe

Neuer Inhalt