Skip to main content
Erschienen in: Journal of Materials Science 20/2018

20.06.2018 | Review

A general perspective of Fe–Mn–Al–C steels

verfasst von: O. A. Zambrano

Erschienen in: Journal of Materials Science | Ausgabe 20/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

During the last years, the scientific and industrial community has focused on the astonishing properties of Fe–Mn–Al–C steels. These high advanced steels allow high-density reductions about ~ 18% lighter than conventional steels, high corrosion resistance, high strength (ultimate tensile strength ~ 1 Gpa), and at the same time ductility above 60%. The increase in the tensile or yield strength and the ductility at the same time is almost a special feature of this kind of new steels, which makes them so interesting for many applications such as in the automotive, armor, and mining industry. The control of these properties depends on a complex relationship between the chemical composition of the steel, the test temperature, the external loads, and the processing parameters of the steel. This review has been conceived to elucidate these complex relations and gather the most important aspects of Fe–Mn–Al–C steels developed so far.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Howell RA, Van Aken DC (2009) A literature review of age hardening Fe–Mn–Al–C alloys. Iron Steel Technol 6:193–212 Howell RA, Van Aken DC (2009) A literature review of age hardening Fe–Mn–Al–C alloys. Iron Steel Technol 6:193–212
2.
Zurück zum Zitat Hansoo K, Dong-Woo S, Nack JK (2013) Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties. Sci Technol Adv Mater 14(1):014205CrossRef Hansoo K, Dong-Woo S, Nack JK (2013) Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties. Sci Technol Adv Mater 14(1):014205CrossRef
4.
Zurück zum Zitat Bartlett L, Van Aken D (2014) High manganese and aluminum steels for the military and transportation industry. JOM 66(9):1770–1784CrossRef Bartlett L, Van Aken D (2014) High manganese and aluminum steels for the military and transportation industry. JOM 66(9):1770–1784CrossRef
5.
Zurück zum Zitat Rana R, Lahaye C, Ray RK (2014) Overview of lightweight ferrous materials: strategies and promises. JOM 66(9):1734–1746CrossRef Rana R, Lahaye C, Ray RK (2014) Overview of lightweight ferrous materials: strategies and promises. JOM 66(9):1734–1746CrossRef
6.
Zurück zum Zitat Zuazo I, Hallstedt B, Lindahl B, Selleby M, Soler M, Etienne A, Perlade A, Hasenpouth D, Massardier-Jourdan V, Cazottes S, Kleber X (2014) Low-density steels: complex metallurgy for automotive applications. JOM 66(9):1747–1758CrossRef Zuazo I, Hallstedt B, Lindahl B, Selleby M, Soler M, Etienne A, Perlade A, Hasenpouth D, Massardier-Jourdan V, Cazottes S, Kleber X (2014) Low-density steels: complex metallurgy for automotive applications. JOM 66(9):1747–1758CrossRef
7.
Zurück zum Zitat Chen S, Rana R, Haldar A, Ray RK (2017) Current state of Fe–Mn–Al–C low density steels. Prog Mater Sci 89:345–391CrossRef Chen S, Rana R, Haldar A, Ray RK (2017) Current state of Fe–Mn–Al–C low density steels. Prog Mater Sci 89:345–391CrossRef
9.
Zurück zum Zitat Desch CH (1941) Robert Abbott Hadfield, 1858–1940. Obit Not Fellows R Soc 3(10):647–664CrossRef Desch CH (1941) Robert Abbott Hadfield, 1858–1940. Obit Not Fellows R Soc 3(10):647–664CrossRef
10.
Zurück zum Zitat Hadfield RA, Burnham TH (1933) Special steels. Sir I. Pitman & Sons Ltd, New York Hadfield RA, Burnham TH (1933) Special steels. Sir I. Pitman & Sons Ltd, New York
11.
Zurück zum Zitat Hadfield RA (1890) Process of making steel containing carbon, manganese, and aluminium (Patent US422403). Google Patents Hadfield RA (1890) Process of making steel containing carbon, manganese, and aluminium (Patent US422403). Google Patents
12.
Zurück zum Zitat Ham J, Cairns R Jr (1958) Manganese joins aluminum to give strong stainless. Prod Eng 29(52):50–51 Ham J, Cairns R Jr (1958) Manganese joins aluminum to give strong stainless. Prod Eng 29(52):50–51
13.
Zurück zum Zitat Schmatz DJ (1959) Formation of beta manganese-type structure in iron–aluminum manganese alloys. Trans Metall Soc AIME 215:112–114 Schmatz DJ (1959) Formation of beta manganese-type structure in iron–aluminum manganese alloys. Trans Metall Soc AIME 215:112–114
14.
Zurück zum Zitat James PJ (1969) Precipitation of the carbide (Fe,Mn)3AlC in an Fe–Al alloy. J Iron Steel Inst 207:54–57 James PJ (1969) Precipitation of the carbide (Fe,Mn)3AlC in an Fe–Al alloy. J Iron Steel Inst 207:54–57
15.
Zurück zum Zitat Kayak GL (1969) Fe–Mn–Al precipitation-hardening austenitic alloys. Met Sci Heat Treat 11(2):95–97CrossRef Kayak GL (1969) Fe–Mn–Al precipitation-hardening austenitic alloys. Met Sci Heat Treat 11(2):95–97CrossRef
16.
Zurück zum Zitat Alekseenko MF, Krivonogov GS, Kozyreva LG, Kachanova IM, Arapova LV (1972) Phase composition, structure, and properties of low-density steel 9G28Yu9MVB. Met Sci Heat Treat 14(3):187–189CrossRef Alekseenko MF, Krivonogov GS, Kozyreva LG, Kachanova IM, Arapova LV (1972) Phase composition, structure, and properties of low-density steel 9G28Yu9MVB. Met Sci Heat Treat 14(3):187–189CrossRef
17.
Zurück zum Zitat Krivonogov G, Alekseenko M, Soloveva G (1975) Phase transformation kinetics of steel 9 G 28 Yu 9 MVB. Phys Met Metallogr 39(4):86–92 Krivonogov G, Alekseenko M, Soloveva G (1975) Phase transformation kinetics of steel 9 G 28 Yu 9 MVB. Phys Met Metallogr 39(4):86–92
18.
Zurück zum Zitat Remy L, Pineau A (1977) Twinning and strain-induced F.C.C. → H.C.P. transformation in the Fe–Mn–Cr–C system. Mater Sci Eng 28(1):99–107CrossRef Remy L, Pineau A (1977) Twinning and strain-induced F.C.C. → H.C.P. transformation in the Fe–Mn–Cr–C system. Mater Sci Eng 28(1):99–107CrossRef
19.
Zurück zum Zitat Bhandarkar D, Zackay VF, Parker ER (1972) Stability and mechanical properties of some metastable austenitic steels. Metall Trans 3(10):2619–2631CrossRef Bhandarkar D, Zackay VF, Parker ER (1972) Stability and mechanical properties of some metastable austenitic steels. Metall Trans 3(10):2619–2631CrossRef
20.
Zurück zum Zitat Chanani GR, Zackay VF, Parker ER (1971) Tensile properties of 0.05 to 0.20 Pct C TRIP steels. Metall Trans 2(1):133–139CrossRef Chanani GR, Zackay VF, Parker ER (1971) Tensile properties of 0.05 to 0.20 Pct C TRIP steels. Metall Trans 2(1):133–139CrossRef
21.
Zurück zum Zitat Zackay VF, Parker ER, Fahr D, Busch R (1967) The enhancement of ductility in high-strength steels. ASM Trans Q 60(2):252–259 Zackay VF, Parker ER, Fahr D, Busch R (1967) The enhancement of ductility in high-strength steels. ASM Trans Q 60(2):252–259
22.
Zurück zum Zitat Benz JC, Leavenworth HW Jr (1985) An assessment of Fe–Mn–Al alloys as substitutes for stainless steels. JOM 37(3):36–39CrossRef Benz JC, Leavenworth HW Jr (1985) An assessment of Fe–Mn–Al alloys as substitutes for stainless steels. JOM 37(3):36–39CrossRef
23.
Zurück zum Zitat Tjong SC (1986) Aqueous corrosion properties of austenitic Fe–8.7Al–29.7Mn–1.04C alloy. Surf Coat Technol 28(2):181–186CrossRef Tjong SC (1986) Aqueous corrosion properties of austenitic Fe–8.7Al–29.7Mn–1.04C alloy. Surf Coat Technol 28(2):181–186CrossRef
24.
Zurück zum Zitat Charles J, Berghezan A (1981) Nickel-free austenitic steels for cryogenic applications: the Fe–23% Mn–5% Al–0.2% C alloys. Cryogenics 21(5):278–280CrossRef Charles J, Berghezan A (1981) Nickel-free austenitic steels for cryogenic applications: the Fe–23% Mn–5% Al–0.2% C alloys. Cryogenics 21(5):278–280CrossRef
25.
Zurück zum Zitat Banerji SK (1981) An update on Fe–Mn–Al steels as a replacement for Ni–Cr stainless steels. In: Nash RT, Gray AG (eds) Conservation and substitution technology for critical materials. https://goo.gl/bcZucf Banerji SK (1981) An update on Fe–Mn–Al steels as a replacement for Ni–Cr stainless steels. In: Nash RT, Gray AG (eds) Conservation and substitution technology for critical materials. https://​goo.​gl/​bcZucf
26.
Zurück zum Zitat Haddick GT, Thompson LD, Parker ER, Zackay VF (1977) Development of nickel-free austenitic stainless steels for ambient and cryogenic applications. In: Material substitution: availability, energy and environmental factors. Chicago, IL Haddick GT, Thompson LD, Parker ER, Zackay VF (1977) Development of nickel-free austenitic stainless steels for ambient and cryogenic applications. In: Material substitution: availability, energy and environmental factors. Chicago, IL
27.
Zurück zum Zitat Krishna MSG, Kumar V, Chhaunker PS (1994) Deformation behaviour of a nickel–chromium free austenitic steel. Scr Metall Mater 30(2):219–222CrossRef Krishna MSG, Kumar V, Chhaunker PS (1994) Deformation behaviour of a nickel–chromium free austenitic steel. Scr Metall Mater 30(2):219–222CrossRef
28.
Zurück zum Zitat Cavallini M, Felli F, Fratesi R, Veniaii F (1982) Aqueous solution corrosion behaviour of “poor man” high manganese–aluminum steels. Mater Corros 33(5):281–284CrossRef Cavallini M, Felli F, Fratesi R, Veniaii F (1982) Aqueous solution corrosion behaviour of “poor man” high manganese–aluminum steels. Mater Corros 33(5):281–284CrossRef
29.
Zurück zum Zitat Banerji SK (1982) The 1982 status report on Fe–Mn–Al-C steels. In: Technical aspects of critical materials use by steel industry. Proceedings of a public workshop. Trends in critical materials requirements for steels of the future. Conservation and substitution technology for chromium, vol II B, p 29 Banerji SK (1982) The 1982 status report on Fe–Mn–Al-C steels. In: Technical aspects of critical materials use by steel industry. Proceedings of a public workshop. Trends in critical materials requirements for steels of the future. Conservation and substitution technology for chromium, vol II B, p 29
30.
Zurück zum Zitat Charles J, Berghezan A, Lutts A (1984) High manganese—aluminum austenitic steels for cryogenic applications, some mechanical and physical properties. J Phys Colloq 45(C1):C1-619–C1-623CrossRef Charles J, Berghezan A, Lutts A (1984) High manganese—aluminum austenitic steels for cryogenic applications, some mechanical and physical properties. J Phys Colloq 45(C1):C1-619–C1-623CrossRef
31.
Zurück zum Zitat Shih C, Zhang Y, Xu Y, Li Y (1984) An Fe–Mn–Al austenitic steel for cryogenic uses. In: Clark AF, Reed RP (eds) Advances in cryogenic engineering materials, vol 30. Springer, Boston, pp 161–168CrossRef Shih C, Zhang Y, Xu Y, Li Y (1984) An Fe–Mn–Al austenitic steel for cryogenic uses. In: Clark AF, Reed RP (eds) Advances in cryogenic engineering materials, vol 30. Springer, Boston, pp 161–168CrossRef
32.
Zurück zum Zitat Kim YG, Park YS, Han JK (1985) Low temperature mechanical behavior of microalloyed and controlled-rolled Fe–Mn–Al–C-X alloys. Metall Trans A 16(9):1689–1693CrossRef Kim YG, Park YS, Han JK (1985) Low temperature mechanical behavior of microalloyed and controlled-rolled Fe–Mn–Al–C-X alloys. Metall Trans A 16(9):1689–1693CrossRef
33.
Zurück zum Zitat Horiuchi T, Ogawa R, Shimada M (1986) Cryogenic Fe–Mn austenitic steels. In: Reed RP, Clark AF (eds) Advances in cryogenic engineering materials. Springer, Boston, pp 33–42CrossRef Horiuchi T, Ogawa R, Shimada M (1986) Cryogenic Fe–Mn austenitic steels. In: Reed RP, Clark AF (eds) Advances in cryogenic engineering materials. Springer, Boston, pp 33–42CrossRef
34.
Zurück zum Zitat Gnauk J, Soc IFE (2011) In commemoration of Prof. Dr.-Ing. Georg Frommeyer (1943–2010). Ultramicroscopy 111(6):743CrossRef Gnauk J, Soc IFE (2011) In commemoration of Prof. Dr.-Ing. Georg Frommeyer (1943–2010). Ultramicroscopy 111(6):743CrossRef
35.
Zurück zum Zitat Grässel O, Krüger L, Frommeyer G, Meyer LW (2000) High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application. Int J Plast 16(10–11):1391–1409CrossRef Grässel O, Krüger L, Frommeyer G, Meyer LW (2000) High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application. Int J Plast 16(10–11):1391–1409CrossRef
36.
Zurück zum Zitat Frommeyer G, Drewes EJ, Engl B (2002) Physical and mechanical properties of iron–aluminium–(Mn,Si) lightweight steels. Rev Métall 97(10):1245–1253CrossRef Frommeyer G, Drewes EJ, Engl B (2002) Physical and mechanical properties of iron–aluminium–(Mn,Si) lightweight steels. Rev Métall 97(10):1245–1253CrossRef
37.
Zurück zum Zitat Jiménez JA, Frommeyer G (2010) Microstructure and texture evolution in a high manganes austenitic steel during tensile test. Mater Sci Forum 638:3272–3277CrossRef Jiménez JA, Frommeyer G (2010) Microstructure and texture evolution in a high manganes austenitic steel during tensile test. Mater Sci Forum 638:3272–3277CrossRef
38.
Zurück zum Zitat Jiménez JA, Frommeyer G (2010) Analysis of the microstructure evolution during tensile testing at room temperature of high-manganese austenitic steel. Mater Charact 61(2):221–226CrossRef Jiménez JA, Frommeyer G (2010) Analysis of the microstructure evolution during tensile testing at room temperature of high-manganese austenitic steel. Mater Charact 61(2):221–226CrossRef
39.
Zurück zum Zitat Grässel O, Frommeyer G, Derder C, Hofmann H (1997) Phase transformations and mechanical properties of Fe–Mn–Si–Al TRIP-steels. J Phys IV Fr 07(C5):C5-383–C5-388CrossRef Grässel O, Frommeyer G, Derder C, Hofmann H (1997) Phase transformations and mechanical properties of Fe–Mn–Si–Al TRIP-steels. J Phys IV Fr 07(C5):C5-383–C5-388CrossRef
40.
Zurück zum Zitat Grässel O, Frommeyer G (2013) Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–AI steels. Mater Sci Technol 14(12):1213–1217CrossRef Grässel O, Frommeyer G (2013) Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–AI steels. Mater Sci Technol 14(12):1213–1217CrossRef
41.
Zurück zum Zitat Frommeyer G, Brüx U, Neumann P (2003) Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int 43(3):438–446CrossRef Frommeyer G, Brüx U, Neumann P (2003) Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int 43(3):438–446CrossRef
42.
Zurück zum Zitat Frommeyer G, Grässel O (2002) Light constructional steel and the use thereof. Google Patents Frommeyer G, Grässel O (2002) Light constructional steel and the use thereof. Google Patents
43.
Zurück zum Zitat Frommeyer GDI, Graessel ODI (1999) Leichtbaustahl und seine Verwendung lightweight steel and its use Germany Patent DE19727759 A1. Google Patents Frommeyer GDI, Graessel ODI (1999) Leichtbaustahl und seine Verwendung lightweight steel and its use Germany Patent DE19727759 A1. Google Patents
44.
Zurück zum Zitat Frommeyer G, Graessel O (2000) Verwendung eines Leichtbaustahls using a lightweight structural steel Germany Patent DE19727759 C2. Google Patents Frommeyer G, Graessel O (2000) Verwendung eines Leichtbaustahls using a lightweight structural steel Germany Patent DE19727759 C2. Google Patents
45.
Zurück zum Zitat Cheng W-C, Liu C-F, Lai Y-F (2003) The role carbon plays in the martensitic phase transformation of an Fe–Mn–Al alloy. Scr Mater 48(3):295–300CrossRef Cheng W-C, Liu C-F, Lai Y-F (2003) The role carbon plays in the martensitic phase transformation of an Fe–Mn–Al alloy. Scr Mater 48(3):295–300CrossRef
46.
Zurück zum Zitat Cheng W-C, Liu C-F, Lai Y-F (2002) Observing the D03 phase in Fe–Mn–Al alloys. Mater Sci Eng A 337(1–2):281–286CrossRef Cheng W-C, Liu C-F, Lai Y-F (2002) Observing the D03 phase in Fe–Mn–Al alloys. Mater Sci Eng A 337(1–2):281–286CrossRef
47.
Zurück zum Zitat Cheng W-C, Lin Y-S, Chen K-F (2014) The formation of ferrite quenching twins in a body-centered cubic Fe–Mn–Al alloy during high-temperature quenching. Scr Mater 81:36–39CrossRef Cheng W-C, Lin Y-S, Chen K-F (2014) The formation of ferrite quenching twins in a body-centered cubic Fe–Mn–Al alloy during high-temperature quenching. Scr Mater 81:36–39CrossRef
48.
Zurück zum Zitat Cheng W-C, Lin H-Y, Liu C-F (2002) Observing the massive transformation in an Fe–Mn–Al alloy. Mater Sci Eng A 335(1–2):82–88CrossRef Cheng W-C, Lin H-Y, Liu C-F (2002) Observing the massive transformation in an Fe–Mn–Al alloy. Mater Sci Eng A 335(1–2):82–88CrossRef
49.
Zurück zum Zitat Cheng W-C, Lin H-Y (2002) The precipitation of FCC phase from BCC matrix in an Fe–Mn–Al alloy. Mater Sci Eng A 323(1–2):462–466CrossRef Cheng W-C, Lin H-Y (2002) The precipitation of FCC phase from BCC matrix in an Fe–Mn–Al alloy. Mater Sci Eng A 323(1–2):462–466CrossRef
50.
Zurück zum Zitat Cheng W-C, Li Y-C (2012) The coexistence of two different pearlites, lamellae of (ferrite + M3C), and lamellae of (ferrite + M23C6) in a Mn–Al steel. Metall Mater Trans A 43(6):1817–1825CrossRef Cheng W-C, Li Y-C (2012) The coexistence of two different pearlites, lamellae of (ferrite + M3C), and lamellae of (ferrite + M23C6) in a Mn–Al steel. Metall Mater Trans A 43(6):1817–1825CrossRef
51.
Zurück zum Zitat Cheng W-C, Lai C-K (2006) Observing massive phase transformation in a Fe–Mn–Al alloy. Scr Mater 55(9):783–786CrossRef Cheng W-C, Lai C-K (2006) Observing massive phase transformation in a Fe–Mn–Al alloy. Scr Mater 55(9):783–786CrossRef
52.
Zurück zum Zitat Cheng W-C, Song Y-S, Lin Y-S, Chen K-F, Pistorius PC (2013) On the eutectoid reaction in a quaternary Fe–C–Mn–Al alloy: austenite → ferrite + kappa-carbide + M23C6 carbide. Metall Mater Trans A 45(3):1199–1216CrossRef Cheng W-C, Song Y-S, Lin Y-S, Chen K-F, Pistorius PC (2013) On the eutectoid reaction in a quaternary Fe–C–Mn–Al alloy: austenite → ferrite + kappa-carbide + M23C6 carbide. Metall Mater Trans A 45(3):1199–1216CrossRef
53.
Zurück zum Zitat Cheng W-C, Cheng C-Y, Hsu C-W, Laughlin DE (2015) Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe–C–Mn–Al austenitic steel. Mater Sci Eng A 642:128–135CrossRef Cheng W-C, Cheng C-Y, Hsu C-W, Laughlin DE (2015) Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe–C–Mn–Al austenitic steel. Mater Sci Eng A 642:128–135CrossRef
54.
Zurück zum Zitat Cheng WC, Lee KH, Lin SM, Chien SY (2017) The observation of austenite to ferrite martensitic transformation in an Fe–Mn–Al austenitic steel after cooling from high temperature. Mater Sci Forum 879:335–338CrossRef Cheng WC, Lee KH, Lin SM, Chien SY (2017) The observation of austenite to ferrite martensitic transformation in an Fe–Mn–Al austenitic steel after cooling from high temperature. Mater Sci Forum 879:335–338CrossRef
55.
Zurück zum Zitat Cheng W-C (2014) Phase transformations of an Fe–0.85C–17.9Mn–7.1Al austenitic steel after quenching and annealing. JOM 66(9):1809–1820CrossRef Cheng W-C (2014) Phase transformations of an Fe–0.85C–17.9Mn–7.1Al austenitic steel after quenching and annealing. JOM 66(9):1809–1820CrossRef
56.
Zurück zum Zitat Cheng W-C (2005) Formation of a new phase after high-temperature annealing and air cooling of an Fe–Mn–Al alloy. Metall Mater Trans A 36(7):1737–1743CrossRef Cheng W-C (2005) Formation of a new phase after high-temperature annealing and air cooling of an Fe–Mn–Al alloy. Metall Mater Trans A 36(7):1737–1743CrossRef
57.
Zurück zum Zitat Gutierrez-Urrutia I, Raabe D (2012) Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe–Mn–Al–C steel. Acta Mater 60(16):5791–5802CrossRef Gutierrez-Urrutia I, Raabe D (2012) Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe–Mn–Al–C steel. Acta Mater 60(16):5791–5802CrossRef
58.
Zurück zum Zitat Gutierrez-Urrutia I, Raabe D (2012) Grain size effect on strain hardening in twinning-induced plasticity steels. Scr Mater 66(12):992–996CrossRef Gutierrez-Urrutia I, Raabe D (2012) Grain size effect on strain hardening in twinning-induced plasticity steels. Scr Mater 66(12):992–996CrossRef
59.
Zurück zum Zitat Gutierrez-Urrutia I, Raabe D (2013) Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels. Scr Mater 68(6):343–347CrossRef Gutierrez-Urrutia I, Raabe D (2013) Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels. Scr Mater 68(6):343–347CrossRef
60.
Zurück zum Zitat Gutierrez-Urrutia I, Raabe D (2013) Microbanding mechanism in an Fe–Mn–C high-Mn twinning-induced plasticity steel. Scr Mater 69(1):53–56CrossRef Gutierrez-Urrutia I, Raabe D (2013) Microbanding mechanism in an Fe–Mn–C high-Mn twinning-induced plasticity steel. Scr Mater 69(1):53–56CrossRef
61.
Zurück zum Zitat Gutierrez-Urrutia I, Raabe D (2014) High strength and ductile low density austenitic FeMnAlC steels: simplex and alloys strengthened by nanoscale ordered carbides. Mater Sci Technol 30(9):1099–1104CrossRef Gutierrez-Urrutia I, Raabe D (2014) High strength and ductile low density austenitic FeMnAlC steels: simplex and alloys strengthened by nanoscale ordered carbides. Mater Sci Technol 30(9):1099–1104CrossRef
62.
Zurück zum Zitat Gutierrez-Urrutia I, Zaefferer S, Raabe D (2010) The effect of grain size and grain orientation on deformation twinning in a Fe–22wt.% Mn–0.6wt.% C TWIP steel. Mater Sci Eng A 527(15):3552–3560CrossRef Gutierrez-Urrutia I, Zaefferer S, Raabe D (2010) The effect of grain size and grain orientation on deformation twinning in a Fe–22wt.% Mn–0.6wt.% C TWIP steel. Mater Sci Eng A 527(15):3552–3560CrossRef
63.
Zurück zum Zitat Herbig M, Kuzmina M, Haase C, Marceau RKW, Gutierrez-Urrutia I, Haley D, Molodov DA, Choi P, Raabe D (2015) Grain boundary segregation in Fe–Mn–C twinning-induced plasticity steels studied by correlative electron backscatter diffraction and atom probe tomography. Acta Mater 83:37–47CrossRef Herbig M, Kuzmina M, Haase C, Marceau RKW, Gutierrez-Urrutia I, Haley D, Molodov DA, Choi P, Raabe D (2015) Grain boundary segregation in Fe–Mn–C twinning-induced plasticity steels studied by correlative electron backscatter diffraction and atom probe tomography. Acta Mater 83:37–47CrossRef
64.
Zurück zum Zitat Hickel T, Sandlöbes S, Marceau RKW, Dick A, Bleskov I, Neugebauer J, Raabe D (2014) Impact of nanodiffusion on the stacking fault energy in high-strength steels. Acta Mater 75:147–155CrossRef Hickel T, Sandlöbes S, Marceau RKW, Dick A, Bleskov I, Neugebauer J, Raabe D (2014) Impact of nanodiffusion on the stacking fault energy in high-strength steels. Acta Mater 75:147–155CrossRef
65.
Zurück zum Zitat Raabe D, Ponge D, Dmitrieva O, Sander B (2009) Designing ultrahigh strength steels with good ductility by combining transformation induced plasticity and martensite aging. Adv Eng Mater 11(7):547–555CrossRef Raabe D, Ponge D, Dmitrieva O, Sander B (2009) Designing ultrahigh strength steels with good ductility by combining transformation induced plasticity and martensite aging. Adv Eng Mater 11(7):547–555CrossRef
66.
Zurück zum Zitat Raabe D, Roters F, Neugebauer J, Gutierrez-Urrutia I, Hickel T, Bleck W, Schneider JM, Wittig JE, Mayer J (2016) Ab initio-guided design of twinning-induced plasticity steels. MRS Bull 41(04):320–325CrossRef Raabe D, Roters F, Neugebauer J, Gutierrez-Urrutia I, Hickel T, Bleck W, Schneider JM, Wittig JE, Mayer J (2016) Ab initio-guided design of twinning-induced plasticity steels. MRS Bull 41(04):320–325CrossRef
67.
Zurück zum Zitat Raabe D, Springer H, Gutierrez-Urrutia I, Roters F, Bausch M, Seol JB, Koyama M, Choi PP, Tsuzaki K (2014) Alloy design, combinatorial synthesis, and microstructure–property relations for low-density Fe–Mn–Al–C austenitic steels. JOM 66(9):1845–1856CrossRef Raabe D, Springer H, Gutierrez-Urrutia I, Roters F, Bausch M, Seol JB, Koyama M, Choi PP, Tsuzaki K (2014) Alloy design, combinatorial synthesis, and microstructure–property relations for low-density Fe–Mn–Al–C austenitic steels. JOM 66(9):1845–1856CrossRef
68.
Zurück zum Zitat Seol J-B, Raabe D, Choi P, Park H-S, Kwak JH, Park C-G (2013) Direct evidence for the formation of ordered carbides in a ferrite-based low-density Fe–Mn–Al–C alloy studied by transmission electron microscopy and atom probe tomography. Scr Mater 68(6):348–353CrossRef Seol J-B, Raabe D, Choi P, Park H-S, Kwak JH, Park C-G (2013) Direct evidence for the formation of ordered carbides in a ferrite-based low-density Fe–Mn–Al–C alloy studied by transmission electron microscopy and atom probe tomography. Scr Mater 68(6):348–353CrossRef
69.
Zurück zum Zitat Springer H, Raabe D (2012) Rapid alloy prototyping: compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn–1.2C–xAl triplex steels. Acta Mater 60(12):4950–4959CrossRef Springer H, Raabe D (2012) Rapid alloy prototyping: compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn–1.2C–xAl triplex steels. Acta Mater 60(12):4950–4959CrossRef
70.
Zurück zum Zitat Welsch E, Ponge D, Hafez Haghighat SM, Sandlöbes S, Choi P, Herbig M, Zaefferer S, Raabe D (2016) Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel. Acta Mater 116:188–199CrossRef Welsch E, Ponge D, Hafez Haghighat SM, Sandlöbes S, Choi P, Herbig M, Zaefferer S, Raabe D (2016) Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel. Acta Mater 116:188–199CrossRef
71.
Zurück zum Zitat Wong SL, Madivala M, Prahl U, Roters F, Raabe D (2016) A crystal plasticity model for twinning- and transformation-induced plasticity. Acta Mater 118:140–151CrossRef Wong SL, Madivala M, Prahl U, Roters F, Raabe D (2016) A crystal plasticity model for twinning- and transformation-induced plasticity. Acta Mater 118:140–151CrossRef
72.
Zurück zum Zitat Yao MJ, Dey P, Seol JB, Choi P, Herbig M, Marceau RKW, Hickel T, Neugebauer J, Raabe D (2016) Combined atom probe tomography and density functional theory investigation of the Al off-stoichiometry of κ-carbides in an austenitic Fe–Mn–Al–C low density steel. Acta Mater 106:229–238CrossRef Yao MJ, Dey P, Seol JB, Choi P, Herbig M, Marceau RKW, Hickel T, Neugebauer J, Raabe D (2016) Combined atom probe tomography and density functional theory investigation of the Al off-stoichiometry of κ-carbides in an austenitic Fe–Mn–Al–C low density steel. Acta Mater 106:229–238CrossRef
73.
Zurück zum Zitat Yao MJ, Welsch E, Ponge D, Haghighat SMH, Sandlöbes S, Choi P, Herbig M, Bleskov I, Hickel T, Lipinska-Chwalek M, Shanthraj P, Scheu C, Zaefferer S, Gault B, Raabe D (2017) Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel. Acta Mater 140:258–273CrossRef Yao MJ, Welsch E, Ponge D, Haghighat SMH, Sandlöbes S, Choi P, Herbig M, Bleskov I, Hickel T, Lipinska-Chwalek M, Shanthraj P, Scheu C, Zaefferer S, Gault B, Raabe D (2017) Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel. Acta Mater 140:258–273CrossRef
74.
Zurück zum Zitat Koyama M, Akiyama E, Lee YK, Raabe D, Tsuzaki K (2017) Overview of hydrogen embrittlement in high-Mn steels. Int J Hydrog Energy 42(17):12706–12723CrossRef Koyama M, Akiyama E, Lee YK, Raabe D, Tsuzaki K (2017) Overview of hydrogen embrittlement in high-Mn steels. Int J Hydrog Energy 42(17):12706–12723CrossRef
75.
Zurück zum Zitat Yang WS, Wu TB, Wan CM (1990) Structure determination of the needle like precipitates in an alloy of Fe–29Mn–8Al–0.06C. Scr Metall Mater 24(5):895–900CrossRef Yang WS, Wu TB, Wan CM (1990) Structure determination of the needle like precipitates in an alloy of Fe–29Mn–8Al–0.06C. Scr Metall Mater 24(5):895–900CrossRef
76.
Zurück zum Zitat Sato A, Soma K, Mori T (1982) Hardening due to pre-existing ϵ-martensite in an Fe–30Mn–1Si alloy single crystal. Acta Metall 30(10):1901–1907CrossRef Sato A, Soma K, Mori T (1982) Hardening due to pre-existing ϵ-martensite in an Fe–30Mn–1Si alloy single crystal. Acta Metall 30(10):1901–1907CrossRef
77.
Zurück zum Zitat Wang R, Straszheim MJ, Rapp RA (1984) A high-temperature oxidation-resistant Fe–Mn–Al–Si alloy. Oxid Met 21(1–2):71–79CrossRef Wang R, Straszheim MJ, Rapp RA (1984) A high-temperature oxidation-resistant Fe–Mn–Al–Si alloy. Oxid Met 21(1–2):71–79CrossRef
79.
Zurück zum Zitat Chu CM, Huang H, Kao PW, Gan D (1994) Effect of alloying chemistry on the lattice constant of austenitic Fe–Mn–Al–C alloys. Scr Metall Mater 30(4):505–508CrossRef Chu CM, Huang H, Kao PW, Gan D (1994) Effect of alloying chemistry on the lattice constant of austenitic Fe–Mn–Al–C alloys. Scr Metall Mater 30(4):505–508CrossRef
80.
Zurück zum Zitat Ishida K, Ohtani H, Satoh N, Kainuma R, Nishizawa T (1990) Phase equilibria in Fe–Mn–Al–C alloys. ISIJ Int 30(8):680–686CrossRef Ishida K, Ohtani H, Satoh N, Kainuma R, Nishizawa T (1990) Phase equilibria in Fe–Mn–Al–C alloys. ISIJ Int 30(8):680–686CrossRef
81.
Zurück zum Zitat Goretskii G, Gorev K (1990) Phase equilibria in the Fe–Mn–Al–C alloys. Izv Akad Nauk SSSR Met 2:218–222 Goretskii G, Gorev K (1990) Phase equilibria in the Fe–Mn–Al–C alloys. Izv Akad Nauk SSSR Met 2:218–222
82.
Zurück zum Zitat Shao CW, Zhang P, Liu R, Zhang ZJ, Pang JC, Zhang ZF (2016) Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: property evaluation, damage mechanisms and life prediction. Acta Mater 103:781–795CrossRef Shao CW, Zhang P, Liu R, Zhang ZJ, Pang JC, Zhang ZF (2016) Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: property evaluation, damage mechanisms and life prediction. Acta Mater 103:781–795CrossRef
83.
Zurück zum Zitat Chen L, Zhao Y, Qin X (2013) Some aspects of high manganese twinning-induced plasticity (TWIP) steel, a review. Acta Metallurgica Sinica (English Letters) 26(1):1–15CrossRef Chen L, Zhao Y, Qin X (2013) Some aspects of high manganese twinning-induced plasticity (TWIP) steel, a review. Acta Metallurgica Sinica (English Letters) 26(1):1–15CrossRef
84.
Zurück zum Zitat Heo Y-U, Song Y-Y, Park S-J, Bhadeshia HKDH, Suh D-W (2012) Influence of silicon in low density Fe–C–Mn–Al steel. Metall Mater Trans A 43(6):1731–1735CrossRef Heo Y-U, Song Y-Y, Park S-J, Bhadeshia HKDH, Suh D-W (2012) Influence of silicon in low density Fe–C–Mn–Al steel. Metall Mater Trans A 43(6):1731–1735CrossRef
85.
Zurück zum Zitat Bartlett LN, Van Aken DC, Medvedeva J, Isheim D, Medvedeva NI, Song K (2014) An atom probe study of kappa carbide precipitation and the effect of silicon addition. Metall Mater Trans A 45(5):2421–2435CrossRef Bartlett LN, Van Aken DC, Medvedeva J, Isheim D, Medvedeva NI, Song K (2014) An atom probe study of kappa carbide precipitation and the effect of silicon addition. Metall Mater Trans A 45(5):2421–2435CrossRef
86.
Zurück zum Zitat Acselrad O, Simao RA, Pereira LC, Achete CA, Kalashnikov IS, Silva EM (2002) Phase transformations in FeMnAlC austenitic steels with Si addition. Metall Mater Trans A 33(11):3569–3573CrossRef Acselrad O, Simao RA, Pereira LC, Achete CA, Kalashnikov IS, Silva EM (2002) Phase transformations in FeMnAlC austenitic steels with Si addition. Metall Mater Trans A 33(11):3569–3573CrossRef
87.
Zurück zum Zitat Ikarashi Y, Sato K, Yamazaki T, Inoue Y, Yamanaka M (1992) Age-hardening and formation of modulated structures in austenitic Fe–Mn–Al–C alloys. J Mater Sci Lett 11(11):733–735CrossRef Ikarashi Y, Sato K, Yamazaki T, Inoue Y, Yamanaka M (1992) Age-hardening and formation of modulated structures in austenitic Fe–Mn–Al–C alloys. J Mater Sci Lett 11(11):733–735CrossRef
88.
Zurück zum Zitat Sato K, Tagawa K, Inoue Y (1990) Modulated structure and magnetic properties of age-hardenable Fe–Mn–Al–C alloys. Metall Trans A 21(1):5–11CrossRef Sato K, Tagawa K, Inoue Y (1990) Modulated structure and magnetic properties of age-hardenable Fe–Mn–Al–C alloys. Metall Trans A 21(1):5–11CrossRef
89.
Zurück zum Zitat Sato K, Tagawa K, Inoue Y (1989) Spinodal decomposition and mechanical properties of an austenitic Fe–30wt.%Mn–9wt.%Al–0.9wt.%C alloy. Mater Sci Eng A 111:45–50CrossRef Sato K, Tagawa K, Inoue Y (1989) Spinodal decomposition and mechanical properties of an austenitic Fe–30wt.%Mn–9wt.%Al–0.9wt.%C alloy. Mater Sci Eng A 111:45–50CrossRef
90.
Zurück zum Zitat Han KH, Choo WK, Laughlin DE (1988) A further contribution to the phase constitution in (Fe0.65Mn0.35)0.83Al0.17-XC pseudo-binary system. Scr Metall 22(12):1873–1878CrossRef Han KH, Choo WK, Laughlin DE (1988) A further contribution to the phase constitution in (Fe0.65Mn0.35)0.83Al0.17-XC pseudo-binary system. Scr Metall 22(12):1873–1878CrossRef
91.
Zurück zum Zitat Li MC, Chang H, Kao PW, Gan D (1999) The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe–Mn–Al–C alloys. Mater Chem Phys 59(1):96–99CrossRef Li MC, Chang H, Kao PW, Gan D (1999) The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe–Mn–Al–C alloys. Mater Chem Phys 59(1):96–99CrossRef
92.
Zurück zum Zitat Tsay G, Tuan Y, Lin C, Chao C, Liu T (2011) Effect of carbon on spinodal decomposition in Fe–26Mn–20Al–C alloys. Mater Trans 52(3):521–525CrossRef Tsay G, Tuan Y, Lin C, Chao C, Liu T (2011) Effect of carbon on spinodal decomposition in Fe–26Mn–20Al–C alloys. Mater Trans 52(3):521–525CrossRef
93.
Zurück zum Zitat Tjong SC (1990) Electron microscope observations of phase decompositions in an austenitic Fe–8.7Al–29.7Mn–1.04C alloy. Mater Charact 24(3):275–292CrossRef Tjong SC (1990) Electron microscope observations of phase decompositions in an austenitic Fe–8.7Al–29.7Mn–1.04C alloy. Mater Charact 24(3):275–292CrossRef
94.
Zurück zum Zitat Rigaud V, Daloz D, Drillet J, Perlade A, Maugis P, Lesoult G (2007) Phases equilibrium study in quaternary iron-rich Fe–Mn–Al–C alloys. ISIJ Int 47(6):898–906CrossRef Rigaud V, Daloz D, Drillet J, Perlade A, Maugis P, Lesoult G (2007) Phases equilibrium study in quaternary iron-rich Fe–Mn–Al–C alloys. ISIJ Int 47(6):898–906CrossRef
95.
Zurück zum Zitat Moon J, Park S-J, Jang JH, Lee T-H, Lee C-H, Hong H-U, Suh D-W, Kim SH, Han HN, Lee BH (2017) Atomistic investigations of κ-carbide precipitation in austenitic Fe–Mn–Al–C lightweight steels and the effect of Mo addition. Scr Mater 127:97–101CrossRef Moon J, Park S-J, Jang JH, Lee T-H, Lee C-H, Hong H-U, Suh D-W, Kim SH, Han HN, Lee BH (2017) Atomistic investigations of κ-carbide precipitation in austenitic Fe–Mn–Al–C lightweight steels and the effect of Mo addition. Scr Mater 127:97–101CrossRef
96.
Zurück zum Zitat Sutou Y, Kamiya N, Umino R, Ohnuma I, Ishida K (2010) High-strength Fe–20Mn–Al–C-based alloys with low density. ISIJ Int 50(6):893–899CrossRef Sutou Y, Kamiya N, Umino R, Ohnuma I, Ishida K (2010) High-strength Fe–20Mn–Al–C-based alloys with low density. ISIJ Int 50(6):893–899CrossRef
97.
Zurück zum Zitat Sohn SS, Song H, Kwak JH, Lee S (2017) Dramatic improvement of strain hardening and ductility to 95% in highly-deformable high-strength duplex lightweight steels. Sci Rep 7(1):1927CrossRef Sohn SS, Song H, Kwak JH, Lee S (2017) Dramatic improvement of strain hardening and ductility to 95% in highly-deformable high-strength duplex lightweight steels. Sci Rep 7(1):1927CrossRef
98.
Zurück zum Zitat Sohn SS, Song H, Jo MC, Song T, Kim HS, Lee S (2017) Novel 1.5 GPa-strength with 50%-ductility by transformation-induced plasticity of non-recrystallized austenite in duplex steels. Sci Rep 7(1):1255CrossRef Sohn SS, Song H, Jo MC, Song T, Kim HS, Lee S (2017) Novel 1.5 GPa-strength with 50%-ductility by transformation-induced plasticity of non-recrystallized austenite in duplex steels. Sci Rep 7(1):1255CrossRef
99.
Zurück zum Zitat Yoo JD, Hwang SW, Park KT (2009) Origin of extended tensile ductility of a Fe–28Mn–10Al–1C steel. Metall Mater Trans A 40(7):1520–1523CrossRef Yoo JD, Hwang SW, Park KT (2009) Origin of extended tensile ductility of a Fe–28Mn–10Al–1C steel. Metall Mater Trans A 40(7):1520–1523CrossRef
100.
Zurück zum Zitat Yoo JD, Park K-T (2008) Microband-induced plasticity in a high Mn–Al–C light steel. Mater Sci Eng A 496(1–2):417–424CrossRef Yoo JD, Park K-T (2008) Microband-induced plasticity in a high Mn–Al–C light steel. Mater Sci Eng A 496(1–2):417–424CrossRef
101.
Zurück zum Zitat Song W, Ingendahl T, Bleck W (2014) Control of strain hardening behavior in high-Mn austenitic steels. Acta Metall Sin (Engl Lett) 27(3):546–556CrossRef Song W, Ingendahl T, Bleck W (2014) Control of strain hardening behavior in high-Mn austenitic steels. Acta Metall Sin (Engl Lett) 27(3):546–556CrossRef
102.
Zurück zum Zitat Cooman BC, Chen L, Kim HS, Estrin Y, Kim SK, Voswinckel H (2009) State-of-the-science of high manganese TWIP steels for automotive applications. In: Haldar A, Suwas S, Bhattacharjee D (eds) Microstructure and texture in steels. Springer, London, pp 165–183CrossRef Cooman BC, Chen L, Kim HS, Estrin Y, Kim SK, Voswinckel H (2009) State-of-the-science of high manganese TWIP steels for automotive applications. In: Haldar A, Suwas S, Bhattacharjee D (eds) Microstructure and texture in steels. Springer, London, pp 165–183CrossRef
103.
Zurück zum Zitat Cheng W-C, Hwang S-M (2011) A eutectoid reaction for the decomposition of austenite into pearlitic lamellae of ferrite and M23C6 carbide in a Mn–Al steel. Metall Mater Trans A 42(7):1760–1766CrossRef Cheng W-C, Hwang S-M (2011) A eutectoid reaction for the decomposition of austenite into pearlitic lamellae of ferrite and M23C6 carbide in a Mn–Al steel. Metall Mater Trans A 42(7):1760–1766CrossRef
104.
Zurück zum Zitat Köster W, Torn W (1933) Die Eisenecke des systems eisen–mangan–alminium. Arch Eisenhüttenwes 7:365–366CrossRef Köster W, Torn W (1933) Die Eisenecke des systems eisen–mangan–alminium. Arch Eisenhüttenwes 7:365–366CrossRef
105.
Zurück zum Zitat Chakrabarti DJ (1977) Phase stability in ternary systems of transition elements with aluminum. Metall Trans B 8(1):121–123CrossRef Chakrabarti DJ (1977) Phase stability in ternary systems of transition elements with aluminum. Metall Trans B 8(1):121–123CrossRef
106.
Zurück zum Zitat Liu X, Hao S (1993) A thermodynamic calculation of the Fe·Mn·Al ternary system. Calphad 17(1):79–91CrossRef Liu X, Hao S (1993) A thermodynamic calculation of the Fe·Mn·Al ternary system. Calphad 17(1):79–91CrossRef
107.
Zurück zum Zitat Liu XJ, Hao SM, Xu LY, Guo YF, Chen H (1996) Experimental study of the phase equilibria in the Fe–Mn–Al system. Metall Mater Trans A 27(9):2429–2435CrossRef Liu XJ, Hao SM, Xu LY, Guo YF, Chen H (1996) Experimental study of the phase equilibria in the Fe–Mn–Al system. Metall Mater Trans A 27(9):2429–2435CrossRef
108.
Zurück zum Zitat Kumar KCH, Raghavan V (1991) A thermodynamic analysis of the Al–C–Fe system. J Phase Equilibria 12(3):275–286CrossRef Kumar KCH, Raghavan V (1991) A thermodynamic analysis of the Al–C–Fe system. J Phase Equilibria 12(3):275–286CrossRef
109.
Zurück zum Zitat Raghavan V (1993) Al–C–Fe (aluminum–carbon–iron). J Phase Equilibria 14(5):615–617CrossRef Raghavan V (1993) Al–C–Fe (aluminum–carbon–iron). J Phase Equilibria 14(5):615–617CrossRef
110.
Zurück zum Zitat Palm M, Inden G (1995) Experimental determination of phase equilibria in the Fe·Al·C system. Intermetallics 3(6):443–454CrossRef Palm M, Inden G (1995) Experimental determination of phase equilibria in the Fe·Al·C system. Intermetallics 3(6):443–454CrossRef
111.
Zurück zum Zitat Raghavan V (2002) Al–C–Fe (aluminum–carbon–iron). J Phase Equilibria 23(6):508–510CrossRef Raghavan V (2002) Al–C–Fe (aluminum–carbon–iron). J Phase Equilibria 23(6):508–510CrossRef
112.
Zurück zum Zitat Raghavan V (2007) Al–C–Fe (aluminum–carbon–iron). J Phase Equilibria Diffus 28(3):267–268CrossRef Raghavan V (2007) Al–C–Fe (aluminum–carbon–iron). J Phase Equilibria Diffus 28(3):267–268CrossRef
113.
Zurück zum Zitat Chin K-G, Lee H-J, Kwak J-H, Kang J-Y, Lee B-J (2010) Thermodynamic calculation on the stability of (Fe, Mn)3AlC carbide in high aluminum steels. J Alloys Compd 505(1):217–223CrossRef Chin K-G, Lee H-J, Kwak J-H, Kang J-Y, Lee B-J (2010) Thermodynamic calculation on the stability of (Fe, Mn)3AlC carbide in high aluminum steels. J Alloys Compd 505(1):217–223CrossRef
114.
Zurück zum Zitat Kaufman L (1977) Proceedings of the fourth calphad meeting Workshop on computer based coupling of thermochemical and phase diagram data held 18–22 August 1975 at the National Bureau of Standards, Gaithersburg, Maryland. Calphad 1(1):7–89CrossRef Kaufman L (1977) Proceedings of the fourth calphad meeting Workshop on computer based coupling of thermochemical and phase diagram data held 18–22 August 1975 at the National Bureau of Standards, Gaithersburg, Maryland. Calphad 1(1):7–89CrossRef
115.
Zurück zum Zitat Kim M-S, Kang Y-B (2015) Development of thermodynamic database for high Mn–high Al steels: phase equilibria in the Fe–Mn–Al–C system by experiment and thermodynamic modeling. Calphad 51:89–103CrossRef Kim M-S, Kang Y-B (2015) Development of thermodynamic database for high Mn–high Al steels: phase equilibria in the Fe–Mn–Al–C system by experiment and thermodynamic modeling. Calphad 51:89–103CrossRef
116.
Zurück zum Zitat Kim M-S, Kang Y-B (2015) Thermodynamic modeling of the Fe–Mn–C and the Fe–Mn–Al systems using the modified quasichemical model for liquid phase. J Phase Equilibria Diffus 36(5):453–470CrossRef Kim M-S, Kang Y-B (2015) Thermodynamic modeling of the Fe–Mn–C and the Fe–Mn–Al systems using the modified quasichemical model for liquid phase. J Phase Equilibria Diffus 36(5):453–470CrossRef
117.
Zurück zum Zitat Phan AT, Paek M-K, Kang Y-B (2014) Phase equilibria and thermodynamics of the Fe–Al–C system: critical evaluation, experiment and thermodynamic optimization. Acta Mater 79:1–15CrossRef Phan AT, Paek M-K, Kang Y-B (2014) Phase equilibria and thermodynamics of the Fe–Al–C system: critical evaluation, experiment and thermodynamic optimization. Acta Mater 79:1–15CrossRef
118.
Zurück zum Zitat Fartushna I, Bajenova I, Khvan A, Cheverikin V, Ivanov D, Shilundeni S, Alpatov A, Sachin K, Hallstedt B (2018) Experimental investigation of solidification and isothermal sections at 1000 and 1100 °C in the Al–Fe–Mn–C system with special attention to the kappa-phase. J Alloys Compd 735:1211–1218CrossRef Fartushna I, Bajenova I, Khvan A, Cheverikin V, Ivanov D, Shilundeni S, Alpatov A, Sachin K, Hallstedt B (2018) Experimental investigation of solidification and isothermal sections at 1000 and 1100 °C in the Al–Fe–Mn–C system with special attention to the kappa-phase. J Alloys Compd 735:1211–1218CrossRef
119.
Zurück zum Zitat Hallstedt B, Khvan AV, Lindahl BB, Selleby M, Liu S (2017) PrecHiMn-4—a thermodynamic database for high-Mn steels. Calphad 56(Supplement C):49–57CrossRef Hallstedt B, Khvan AV, Lindahl BB, Selleby M, Liu S (2017) PrecHiMn-4—a thermodynamic database for high-Mn steels. Calphad 56(Supplement C):49–57CrossRef
120.
Zurück zum Zitat Djurovic D, Hallstedt B, von Appen J, Dronskowski R (2011) Thermodynamic assessment of the Fe–Mn–C system. Calphad 35(4):479–491CrossRef Djurovic D, Hallstedt B, von Appen J, Dronskowski R (2011) Thermodynamic assessment of the Fe–Mn–C system. Calphad 35(4):479–491CrossRef
121.
Zurück zum Zitat Hwang K-H, Wan C-M, Byrne J (1991) Phase transformation in a duplex Fe–Mn–Al–C alloy. Mater Sci Eng A 132:161–169CrossRef Hwang K-H, Wan C-M, Byrne J (1991) Phase transformation in a duplex Fe–Mn–Al–C alloy. Mater Sci Eng A 132:161–169CrossRef
122.
Zurück zum Zitat Inoue A, Kojima Y, Minemura T, Masumoto T (1981) Microstructure and mechanical properties of ductile Ni3AI-type compound in Fe–(Ni, Mn)–AI-C systems rapidly quenched from melts. Metall Trans A 12(7):1245–1253CrossRef Inoue A, Kojima Y, Minemura T, Masumoto T (1981) Microstructure and mechanical properties of ductile Ni3AI-type compound in Fe–(Ni, Mn)–AI-C systems rapidly quenched from melts. Metall Trans A 12(7):1245–1253CrossRef
123.
Zurück zum Zitat Han KH, Choo WK (1983) X-ray diffraction study on the structure of rapidly solidified Fe–Al–C and Fe(Mn, Ni)–Al–C alloys. Metall Trans A 14(4):973–975CrossRef Han KH, Choo WK (1983) X-ray diffraction study on the structure of rapidly solidified Fe–Al–C and Fe(Mn, Ni)–Al–C alloys. Metall Trans A 14(4):973–975CrossRef
124.
Zurück zum Zitat Han KH, Yoon JC, Choo WK (1986) TEM evidence of modulated structure in Fe·Mn·Al·C austenitic alloys. Scr Metall 20(1):33–36CrossRef Han KH, Yoon JC, Choo WK (1986) TEM evidence of modulated structure in Fe·Mn·Al·C austenitic alloys. Scr Metall 20(1):33–36CrossRef
125.
Zurück zum Zitat Yang KH, Choo WK (1990) Evidence of carbon ordering and morphology change in a cubic carbide phase. Philos Mag Lett 62(3):221–226CrossRef Yang KH, Choo WK (1990) Evidence of carbon ordering and morphology change in a cubic carbide phase. Philos Mag Lett 62(3):221–226CrossRef
126.
Zurück zum Zitat Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41(3):653–658CrossRef Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41(3):653–658CrossRef
127.
Zurück zum Zitat Yang L, Huang F, Guo Z, Rong Y, Chen N (2016) Investigation on the formation mechanism of ordered carbide (FeMn)3AlC in the Al added twinning-induced plasticity steels. J Shanghai Jiaotong Univ (Sci) 21(4):406–410CrossRef Yang L, Huang F, Guo Z, Rong Y, Chen N (2016) Investigation on the formation mechanism of ordered carbide (FeMn)3AlC in the Al added twinning-induced plasticity steels. J Shanghai Jiaotong Univ (Sci) 21(4):406–410CrossRef
128.
Zurück zum Zitat Hosoda H, Miyazaki S, Mishima Y (2001) Phase constitution of some intermetallics in continuous quaternary pillar phase diagrams. J Phase Equilibria 22(4):394–399CrossRef Hosoda H, Miyazaki S, Mishima Y (2001) Phase constitution of some intermetallics in continuous quaternary pillar phase diagrams. J Phase Equilibria 22(4):394–399CrossRef
129.
Zurück zum Zitat Ji-Young N, Hanchul K (2011) Density functional theory calculations on kappa-carbides, (Fe, Mn)3AlC. J Korean Phys Soc 58(2):285–290CrossRef Ji-Young N, Hanchul K (2011) Density functional theory calculations on kappa-carbides, (Fe, Mn)3AlC. J Korean Phys Soc 58(2):285–290CrossRef
130.
Zurück zum Zitat Dey P, Nazarov R, Dutta B, Yao M, Herbig M, Friák M, Hickel T, Raabe D, Neugebauer J (2017) Ab initio explanation of disorder and off-stoichiometry in Fe–Mn–Al–C κ carbides. Phys Rev B 95(10):104108CrossRef Dey P, Nazarov R, Dutta B, Yao M, Herbig M, Friák M, Hickel T, Raabe D, Neugebauer J (2017) Ab initio explanation of disorder and off-stoichiometry in Fe–Mn–Al–C κ carbides. Phys Rev B 95(10):104108CrossRef
131.
Zurück zum Zitat Dierkes H, van Leusen J, Bogdanovski D, Dronskowski R (2017) Synthesis, crystal structure, magnetic properties, and stability of the manganese-rich “Mn3AlC” κ phase. Inorg Chem 56(3):1045–1048CrossRef Dierkes H, van Leusen J, Bogdanovski D, Dronskowski R (2017) Synthesis, crystal structure, magnetic properties, and stability of the manganese-rich “Mn3AlC” κ phase. Inorg Chem 56(3):1045–1048CrossRef
132.
Zurück zum Zitat Liebscher CH, Yao M, Dey P, Lipińska-Chwalek M, Berkels B, Gault B, Hickel T, Herbig M, Mayer J, Neugebauer J, Raabe D, Dehm G, Scheu C (2018) Tetragonal fcc-Fe induced by k-carbide precipitates: atomic scale insights from correlative electron microscopy, atom probe tomography, and density functional theory. Phys Rev Mater 2(2):023804CrossRef Liebscher CH, Yao M, Dey P, Lipińska-Chwalek M, Berkels B, Gault B, Hickel T, Herbig M, Mayer J, Neugebauer J, Raabe D, Dehm G, Scheu C (2018) Tetragonal fcc-Fe induced by k-carbide precipitates: atomic scale insights from correlative electron microscopy, atom probe tomography, and density functional theory. Phys Rev Mater 2(2):023804CrossRef
133.
Zurück zum Zitat Timmerscheidt T, Dey P, Bogdanovski D, von Appen J, Hickel T, Neugebauer J, Dronskowski R (2017) The role of κ-carbides as hydrogen traps in high-Mn steels. Metals 7(7):264CrossRef Timmerscheidt T, Dey P, Bogdanovski D, von Appen J, Hickel T, Neugebauer J, Dronskowski R (2017) The role of κ-carbides as hydrogen traps in high-Mn steels. Metals 7(7):264CrossRef
134.
Zurück zum Zitat Sevsek S, Bleck W (2018) Ab initio-based modelling of the yield strength in high-manganese steels. Metals 8(1):34CrossRef Sevsek S, Bleck W (2018) Ab initio-based modelling of the yield strength in high-manganese steels. Metals 8(1):34CrossRef
135.
Zurück zum Zitat Kalashnikov IS, Acselrad O, Shalkevich A, Chumakova LD, Pereira LC (2003) Heat treatment and thermal stability of FeMnAlC alloys. J Mater Process Technol 136(1–3):72–79CrossRef Kalashnikov IS, Acselrad O, Shalkevich A, Chumakova LD, Pereira LC (2003) Heat treatment and thermal stability of FeMnAlC alloys. J Mater Process Technol 136(1–3):72–79CrossRef
136.
Zurück zum Zitat Song W, Zhang W, von Appen J, Dronskowski R, Bleck W (2015) κ-Phase formation in Fe–Mn–Al–C austenitic steels. Steel Res Int 86(10):1161–1169CrossRef Song W, Zhang W, von Appen J, Dronskowski R, Bleck W (2015) κ-Phase formation in Fe–Mn–Al–C austenitic steels. Steel Res Int 86(10):1161–1169CrossRef
137.
Zurück zum Zitat Lu WJ, Zhang XF, Qin RS (2015) Structure and properties of κ-carbides in duplex lightweight steels. Ironmaking Steelmaking 42(8):626–631CrossRef Lu WJ, Zhang XF, Qin RS (2015) Structure and properties of κ-carbides in duplex lightweight steels. Ironmaking Steelmaking 42(8):626–631CrossRef
138.
Zurück zum Zitat Lin Y-C (1999) Structures and superparamagnetic properties of overaged Fe–Al–Mn–C alloys. Acta Mater 47(18):4665–4681CrossRef Lin Y-C (1999) Structures and superparamagnetic properties of overaged Fe–Al–Mn–C alloys. Acta Mater 47(18):4665–4681CrossRef
139.
Zurück zum Zitat Liu D, Cai M, Ding H, Han D (2018) Control of inter/intra-granular κ-carbides and its influence on overall mechanical properties of a Fe–11Mn–10Al–1.25C low density steel. Mater Sci Eng A 715:25–32CrossRef Liu D, Cai M, Ding H, Han D (2018) Control of inter/intra-granular κ-carbides and its influence on overall mechanical properties of a Fe–11Mn–10Al–1.25C low density steel. Mater Sci Eng A 715:25–32CrossRef
140.
Zurück zum Zitat Haase C, Zehnder C, Ingendahl T, Bikar A, Tang F, Hallstedt B, Hu W, Bleck W, Molodov DA (2017) On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-weight steel. Acta Mater 122:332–343CrossRef Haase C, Zehnder C, Ingendahl T, Bikar A, Tang F, Hallstedt B, Hu W, Bleck W, Molodov DA (2017) On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-weight steel. Acta Mater 122:332–343CrossRef
141.
Zurück zum Zitat Bentley AP (1986) Ordering in Fe–Mn–Al–C austenite. J Mater Sci Lett 5(9):907–908CrossRef Bentley AP (1986) Ordering in Fe–Mn–Al–C austenite. J Mater Sci Lett 5(9):907–908CrossRef
142.
Zurück zum Zitat Chu SM, Kao PW, Gan D (1992) Growth kinetics of κ-carbide particles in Fe–30Mn–10Al–1C–1Si alloy. Scr Metall Mater 26(7):1067–1070CrossRef Chu SM, Kao PW, Gan D (1992) Growth kinetics of κ-carbide particles in Fe–30Mn–10Al–1C–1Si alloy. Scr Metall Mater 26(7):1067–1070CrossRef
143.
Zurück zum Zitat Chao CY, Liu TF (1991) Grain boundary precipitation in an Fe·28.6Mn·9.8Al·0.8Si·1.0C alloy. Scr Metall Mater 25(7):1623–1628CrossRef Chao CY, Liu TF (1991) Grain boundary precipitation in an Fe·28.6Mn·9.8Al·0.8Si·1.0C alloy. Scr Metall Mater 25(7):1623–1628CrossRef
144.
Zurück zum Zitat Kim CW, Kwon SI, Lee BH, Moon JO, Park SJ, Lee JH, Hong HU (2016) Atomistic study of nano-sized κ-carbide formation and its interaction with dislocations in a cast Si added FeMnAlC lightweight steel. Mater Sci Eng A 673:108–113CrossRef Kim CW, Kwon SI, Lee BH, Moon JO, Park SJ, Lee JH, Hong HU (2016) Atomistic study of nano-sized κ-carbide formation and its interaction with dislocations in a cast Si added FeMnAlC lightweight steel. Mater Sci Eng A 673:108–113CrossRef
145.
Zurück zum Zitat Liu TF, Wan CM (1985) DO3 structure in an Fe–Al–Mn–Cr alloy. Scr Metall 19(7):805–810CrossRef Liu TF, Wan CM (1985) DO3 structure in an Fe–Al–Mn–Cr alloy. Scr Metall 19(7):805–810CrossRef
146.
Zurück zum Zitat Liu TF, Wan CM (1985) α-Mn structure in a Fe–Al–Mn–Cr alloy. Scr Metall 19(6):727–732CrossRef Liu TF, Wan CM (1985) α-Mn structure in a Fe–Al–Mn–Cr alloy. Scr Metall 19(6):727–732CrossRef
147.
Zurück zum Zitat Lin YL, Chou CP (1992) M23C6 carbide in an Fe–26.6Mn–8.8Al–0.61C alloy. Scr Metall Mater 27(1):67–70CrossRef Lin YL, Chou CP (1992) M23C6 carbide in an Fe–26.6Mn–8.8Al–0.61C alloy. Scr Metall Mater 27(1):67–70CrossRef
148.
Zurück zum Zitat Peng SW, Chou CP (1992) Orientation relationships between M6C carbide and its matrices in an Fe24.6Mn6.6Al3.1Mo1.0C alloy. Scr Metall Mater 26(2):243–248CrossRef Peng SW, Chou CP (1992) Orientation relationships between M6C carbide and its matrices in an Fe24.6Mn6.6Al3.1Mo1.0C alloy. Scr Metall Mater 26(2):243–248CrossRef
149.
Zurück zum Zitat Peng SW, Chou CP (1992) M2C structure in an Fe24.6Mn6.6A13.1Mo1.0C alloy. Scr Metall Mater 26(12):1851–1856CrossRef Peng SW, Chou CP (1992) M2C structure in an Fe24.6Mn6.6A13.1Mo1.0C alloy. Scr Metall Mater 26(12):1851–1856CrossRef
150.
Zurück zum Zitat Peng SW, Chou CP (1992) Twinned structure of M6C carbide in an Fe–Mn–Al–Mo–C alloy. Scr Metall Mater 27(9):1173–1178CrossRef Peng SW, Chou CP (1992) Twinned structure of M6C carbide in an Fe–Mn–Al–Mo–C alloy. Scr Metall Mater 27(9):1173–1178CrossRef
151.
Zurück zum Zitat Emo J, Maugis P (2017) Atomic mean-field model of E21 ordering in γ-iron–aluminium–carbon alloys. J Alloys Compd 696:1120–1128CrossRef Emo J, Maugis P (2017) Atomic mean-field model of E21 ordering in γ-iron–aluminium–carbon alloys. J Alloys Compd 696:1120–1128CrossRef
152.
Zurück zum Zitat Feng Y, Song R, Pei Z, Song R, Dou G (2018) Effect of aging isothermal time on the microstructure and room-temperature impact toughness of Fe–24.8Mn–7.3Al–1.2C austenitic steel with κ-carbides precipitation. Met Mater Int Feng Y, Song R, Pei Z, Song R, Dou G (2018) Effect of aging isothermal time on the microstructure and room-temperature impact toughness of Fe–24.8Mn–7.3Al–1.2C austenitic steel with κ-carbides precipitation. Met Mater Int
153.
Zurück zum Zitat Hosford WF (2010) Mechanical behavior of materials, chap 8, 2nd edn. Cambridge University Press, Cambridge, p 151 Hosford WF (2010) Mechanical behavior of materials, chap 8, 2nd edn. Cambridge University Press, Cambridge, p 151
154.
Zurück zum Zitat Meyers MA, Chawla KK (2008) Mechanical behavior of materials, 2nd edn. Cambridge University Press, CambridgeCrossRef Meyers MA, Chawla KK (2008) Mechanical behavior of materials, 2nd edn. Cambridge University Press, CambridgeCrossRef
155.
Zurück zum Zitat Idrissi H, Ryelandt L, Veron M, Schryvers D, Jacques PJ (2009) Is there a relationship between the stacking fault character and the activated mode of plasticity of Fe–Mn-based austenitic steels? Scr Mater 60(11):941–944CrossRef Idrissi H, Ryelandt L, Veron M, Schryvers D, Jacques PJ (2009) Is there a relationship between the stacking fault character and the activated mode of plasticity of Fe–Mn-based austenitic steels? Scr Mater 60(11):941–944CrossRef
156.
Zurück zum Zitat Wang XD, Huang BX, Rong YH, Wang L (2007) Determination of stacking fault probability in fcc Fe–Mn–Si–Al alloy by electron diffraction. J Appl Phys 101(9):093511CrossRef Wang XD, Huang BX, Rong YH, Wang L (2007) Determination of stacking fault probability in fcc Fe–Mn–Si–Al alloy by electron diffraction. J Appl Phys 101(9):093511CrossRef
157.
Zurück zum Zitat Wang JW, Narayanan S, Huang JY, Zhang Z, Zhu T, Mao SX (2013) Atomic-scale dynamic process of deformation-induced stacking fault tetrahedra in gold nanocrystals. Nat Commun 4:2340CrossRef Wang JW, Narayanan S, Huang JY, Zhang Z, Zhu T, Mao SX (2013) Atomic-scale dynamic process of deformation-induced stacking fault tetrahedra in gold nanocrystals. Nat Commun 4:2340CrossRef
158.
Zurück zum Zitat Suzuki H (1962) Segregation of solute atoms to stacking faults. J Phys Soc Jpn 17(2):322–325CrossRef Suzuki H (1962) Segregation of solute atoms to stacking faults. J Phys Soc Jpn 17(2):322–325CrossRef
159.
Zurück zum Zitat Dumay A, Chateau JP, Allain S, Migot S, Bouaziz O (2008) Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel. Mater Sci Eng A 483–484:184–187CrossRef Dumay A, Chateau JP, Allain S, Migot S, Bouaziz O (2008) Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel. Mater Sci Eng A 483–484:184–187CrossRef
160.
Zurück zum Zitat Dini G, Najafizadeh A, Monir-Vaghefi SM, Ueji R (2010) Grain size effect on the martensite formation in a high-manganese TWIP steel by the rietveld method. J Mater Sci Technol 26(2):181–186CrossRef Dini G, Najafizadeh A, Monir-Vaghefi SM, Ueji R (2010) Grain size effect on the martensite formation in a high-manganese TWIP steel by the rietveld method. J Mater Sci Technol 26(2):181–186CrossRef
161.
Zurück zum Zitat Saeed-Akbari A, Imlau J, Prahl U, Bleck W (2009) Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels. Metall Mater Trans A 40(13):3076–3090CrossRef Saeed-Akbari A, Imlau J, Prahl U, Bleck W (2009) Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels. Metall Mater Trans A 40(13):3076–3090CrossRef
162.
Zurück zum Zitat Wan J, Chen S, Xu Z (2001) The influence of temperature on stacking fault energy in Fe-based alloys. Sci China Ser E Technol Sci 44(4):345–352CrossRef Wan J, Chen S, Xu Z (2001) The influence of temperature on stacking fault energy in Fe-based alloys. Sci China Ser E Technol Sci 44(4):345–352CrossRef
163.
Zurück zum Zitat Kim J, De Cooman BC (2011) On the stacking fault energy of Fe–18 Pct Mn–0.6 Pct C–1.5 Pct Al twinning-induced plasticity steel. Metall Mater Trans A 42(4):932–936CrossRef Kim J, De Cooman BC (2011) On the stacking fault energy of Fe–18 Pct Mn–0.6 Pct C–1.5 Pct Al twinning-induced plasticity steel. Metall Mater Trans A 42(4):932–936CrossRef
164.
Zurück zum Zitat Pierce DT, Bentley J, Jiménez JA, Wittig JE (2012) Stacking fault energy measurements of Fe–Mn–Al–Si austenitic twinning-induced plasticity steels. Scr Mater 66(10):753–756CrossRef Pierce DT, Bentley J, Jiménez JA, Wittig JE (2012) Stacking fault energy measurements of Fe–Mn–Al–Si austenitic twinning-induced plasticity steels. Scr Mater 66(10):753–756CrossRef
165.
Zurück zum Zitat Smallman RE, Dobson PS (1970) Stacking fault energy measurement from diffusion. Metall Trans 1(9):2383–2389 Smallman RE, Dobson PS (1970) Stacking fault energy measurement from diffusion. Metall Trans 1(9):2383–2389
166.
Zurück zum Zitat Schramm RE, Reed RP (1975) Stacking fault energies of seven commercial austenitic stainless steels. Metall Trans A 6(7):1345–1351CrossRef Schramm RE, Reed RP (1975) Stacking fault energies of seven commercial austenitic stainless steels. Metall Trans A 6(7):1345–1351CrossRef
167.
Zurück zum Zitat Balogh L, Ribárik G, Ungár T (2006) Stacking faults and twin boundaries in fcc crystals determined by X-ray diffraction profile analysis. J Appl Phys 100(2):023512CrossRef Balogh L, Ribárik G, Ungár T (2006) Stacking faults and twin boundaries in fcc crystals determined by X-ray diffraction profile analysis. J Appl Phys 100(2):023512CrossRef
168.
Zurück zum Zitat Medvedeva NI, Park MS, Van Aken DC, Medvedeva JE (2014) First-principles study of Mn, Al and C distribution and their effect on stacking fault energies in fcc Fe. J Alloys Compd 582:475–482CrossRef Medvedeva NI, Park MS, Van Aken DC, Medvedeva JE (2014) First-principles study of Mn, Al and C distribution and their effect on stacking fault energies in fcc Fe. J Alloys Compd 582:475–482CrossRef
169.
Zurück zum Zitat Güvenç O, Roters F, Hickel T, Bambach M (2014) ICME for crashworthiness of TWIP steels: from ab initio to the crash performance. JOM 67(1):120–128CrossRef Güvenç O, Roters F, Hickel T, Bambach M (2014) ICME for crashworthiness of TWIP steels: from ab initio to the crash performance. JOM 67(1):120–128CrossRef
170.
Zurück zum Zitat Curtze S, Kuokkala VT, Oikari A, Talonen J, Hänninen H (2011) Thermodynamic modeling of the stacking fault energy of austenitic steels. Acta Mater 59(3):1068–1076CrossRef Curtze S, Kuokkala VT, Oikari A, Talonen J, Hänninen H (2011) Thermodynamic modeling of the stacking fault energy of austenitic steels. Acta Mater 59(3):1068–1076CrossRef
171.
Zurück zum Zitat Zambrano OA (2016) Stacking fault energy maps of Fe–Mn–Al–C steels: effect of temperature, grain size and variations in compositions. J Eng Mater Technol 138(4):041010CrossRef Zambrano OA (2016) Stacking fault energy maps of Fe–Mn–Al–C steels: effect of temperature, grain size and variations in compositions. J Eng Mater Technol 138(4):041010CrossRef
172.
Zurück zum Zitat Pierce D, Jiménez J, Bentley J, Raabe D, Oskay C, Wittig J (2014) The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory. Acta Mater 68:238–253CrossRef Pierce D, Jiménez J, Bentley J, Raabe D, Oskay C, Wittig J (2014) The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory. Acta Mater 68:238–253CrossRef
173.
Zurück zum Zitat Allain S, Chateau JP, Bouaziz O, Migot S, Guelton N (2004) Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Mater Sci Eng A 387–389(1-2 SPEC. ISS):158–162CrossRef Allain S, Chateau JP, Bouaziz O, Migot S, Guelton N (2004) Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Mater Sci Eng A 387–389(1-2 SPEC. ISS):158–162CrossRef
174.
Zurück zum Zitat Geissler D, Freudenberger J, Kauffmann A, Martin S, Rafaja D (2014) Assessment of the thermodynamic dimension of the stacking fault energy. Philos Mag 94(26):2967–2979CrossRef Geissler D, Freudenberger J, Kauffmann A, Martin S, Rafaja D (2014) Assessment of the thermodynamic dimension of the stacking fault energy. Philos Mag 94(26):2967–2979CrossRef
175.
Zurück zum Zitat Das A (2015) Revisiting stacking fault energy of steels. Metall Mater Trans A 47(2):748–768CrossRef Das A (2015) Revisiting stacking fault energy of steels. Metall Mater Trans A 47(2):748–768CrossRef
177.
Zurück zum Zitat Sato K, Ichinose M, Hirotsu Y, Inoue Y (1989) Effects of deformation induced phase transformation and twinning on the mechanical properties of austenitic Fe–Mn–Al alloys. ISIJ Int 29(10):868–877CrossRef Sato K, Ichinose M, Hirotsu Y, Inoue Y (1989) Effects of deformation induced phase transformation and twinning on the mechanical properties of austenitic Fe–Mn–Al alloys. ISIJ Int 29(10):868–877CrossRef
178.
Zurück zum Zitat Koyama M, Sawaguchi T, Tsuzaki K (2015) Deformation twinning behavior of twinning-induced plasticity steels with different carbon concentrations—part 2: proposal of dynamic-strain-aging-assisted deformation twinning. ISIJ Int 55(8):1754–1761CrossRef Koyama M, Sawaguchi T, Tsuzaki K (2015) Deformation twinning behavior of twinning-induced plasticity steels with different carbon concentrations—part 2: proposal of dynamic-strain-aging-assisted deformation twinning. ISIJ Int 55(8):1754–1761CrossRef
179.
Zurück zum Zitat Jung I-C, De Cooman BC (2013) Temperature dependence of the flow stress of Fe–18Mn–0.6C–xAl twinning-induced plasticity steel. Acta Mater 61(18):6724–6735CrossRef Jung I-C, De Cooman BC (2013) Temperature dependence of the flow stress of Fe–18Mn–0.6C–xAl twinning-induced plasticity steel. Acta Mater 61(18):6724–6735CrossRef
180.
Zurück zum Zitat Bleck W, Guo X, Ma Y (2017) The TRIP effect and its application in cold formable sheet steels. Steel Res Int 88:1700218CrossRef Bleck W, Guo X, Ma Y (2017) The TRIP effect and its application in cold formable sheet steels. Steel Res Int 88:1700218CrossRef
181.
Zurück zum Zitat Lee Y-K, Choi C (2000) Driving force for γ → ε martensitic transformation and stacking fault energy of γ in Fe–Mn binary system. Metall Mater Trans A 31(2):355–360CrossRef Lee Y-K, Choi C (2000) Driving force for γ → ε martensitic transformation and stacking fault energy of γ in Fe–Mn binary system. Metall Mater Trans A 31(2):355–360CrossRef
182.
Zurück zum Zitat Nakano J, Jacques PJ (2010) Effects of the thermodynamic parameters of the hcp phase on the stacking fault energy calculations in the Fe–Mn and Fe–Mn–C systems. Calphad 34(2):167–175CrossRef Nakano J, Jacques PJ (2010) Effects of the thermodynamic parameters of the hcp phase on the stacking fault energy calculations in the Fe–Mn and Fe–Mn–C systems. Calphad 34(2):167–175CrossRef
183.
Zurück zum Zitat Mahato B, Shee SK, Sahu T, Ghosh Chowdhury S, Sahu P, Porter DA, Karjalainen LP (2015) An effective stacking fault energy viewpoint on the formation of extended defects and their contribution to strain hardening in a Fe–Mn–Si–Al twinning-induced plasticity steel. Acta Mater 86:69–79CrossRef Mahato B, Shee SK, Sahu T, Ghosh Chowdhury S, Sahu P, Porter DA, Karjalainen LP (2015) An effective stacking fault energy viewpoint on the formation of extended defects and their contribution to strain hardening in a Fe–Mn–Si–Al twinning-induced plasticity steel. Acta Mater 86:69–79CrossRef
184.
Zurück zum Zitat Yuan X, Chen L, Zhao Y, Di H, Zhu F (2015) Influence of annealing temperature on mechanical properties and microstructures of a high manganese austenitic steel. J Mater Process Technol 217:278–285CrossRef Yuan X, Chen L, Zhao Y, Di H, Zhu F (2015) Influence of annealing temperature on mechanical properties and microstructures of a high manganese austenitic steel. J Mater Process Technol 217:278–285CrossRef
185.
Zurück zum Zitat Remy L (1977) Temperature variation of the intrinsic stacking fault energy of a high manganese austenitic steel. Acta Metall 25(2):173–179CrossRef Remy L (1977) Temperature variation of the intrinsic stacking fault energy of a high manganese austenitic steel. Acta Metall 25(2):173–179CrossRef
186.
Zurück zum Zitat Rémy L, Pineau A, Thomas B (1978) Temperature dependence of stacking fault energy in close-packed metals and alloys. Mater Sci Eng 36(1):47–63CrossRef Rémy L, Pineau A, Thomas B (1978) Temperature dependence of stacking fault energy in close-packed metals and alloys. Mater Sci Eng 36(1):47–63CrossRef
187.
Zurück zum Zitat Zambrano OA (2016) Stacking fault energy maps of Fe–Mn–Al–C-Si steels: effect of temperature, grain size, and variations in compositions. J Eng Mater Technol Trans ASME 138(4):041010-1–041010-9CrossRef Zambrano OA (2016) Stacking fault energy maps of Fe–Mn–Al–C-Si steels: effect of temperature, grain size, and variations in compositions. J Eng Mater Technol Trans ASME 138(4):041010-1–041010-9CrossRef
188.
Zurück zum Zitat Dai Q-X, Cheng X-N, Wang A-D, Luo X-M (2002) Stacking fault energy of cryogenic austenitic steels. Chin Phys 11(6):78–83 Dai Q-X, Cheng X-N, Wang A-D, Luo X-M (2002) Stacking fault energy of cryogenic austenitic steels. Chin Phys 11(6):78–83
189.
Zurück zum Zitat Tian X, Zhang Y (2009) Effect of Si content on the stacking fault energy in γ-Fe–Mn–Si–C alloys: part I. X-ray diffraction line profile analysis. Mater Sci Eng A 516(1–2):73–77CrossRef Tian X, Zhang Y (2009) Effect of Si content on the stacking fault energy in γ-Fe–Mn–Si–C alloys: part I. X-ray diffraction line profile analysis. Mater Sci Eng A 516(1–2):73–77CrossRef
190.
Zurück zum Zitat Tian X, Zhang Y (2009) Effect of Si content on the stacking fault energy in γ-Fe–Mn–Si–C alloys: part II. Thermodynamic estimation. Mater Sci Eng A 516(1–2):78–83CrossRef Tian X, Zhang Y (2009) Effect of Si content on the stacking fault energy in γ-Fe–Mn–Si–C alloys: part II. Thermodynamic estimation. Mater Sci Eng A 516(1–2):78–83CrossRef
191.
Zurück zum Zitat Chen FC, Chou CP, Li P, Chu SL (1993) Effect of aluminium on TRIP Fe·Mn·Al alloy steels at room temperature. Mater Sci Eng A 160(2):261–270CrossRef Chen FC, Chou CP, Li P, Chu SL (1993) Effect of aluminium on TRIP Fe·Mn·Al alloy steels at room temperature. Mater Sci Eng A 160(2):261–270CrossRef
192.
Zurück zum Zitat Tian X, Tian R, Wei X, Zhang Y (2013) Effect of al content on work hardening in austenitic Fe–Mn–Al–C alloys. Can Metall Q 43(2):183–192CrossRef Tian X, Tian R, Wei X, Zhang Y (2013) Effect of al content on work hardening in austenitic Fe–Mn–Al–C alloys. Can Metall Q 43(2):183–192CrossRef
193.
Zurück zum Zitat Peng X, Zhu D-Y, Hu Z-M, Wang M-J, Liu L-L, Liu H-J (2014) Effect of carbon content on stacking fault energy of Fe–20Mn–3Cu TWIP steel. J Iron Steel Res Int 21(1):116–120CrossRef Peng X, Zhu D-Y, Hu Z-M, Wang M-J, Liu L-L, Liu H-J (2014) Effect of carbon content on stacking fault energy of Fe–20Mn–3Cu TWIP steel. J Iron Steel Res Int 21(1):116–120CrossRef
194.
Zurück zum Zitat Brofman PJ, Ansell GS (1978) On the effect of carbon on the stacking fault energy of austenitic stainless steels. Metall Trans A 9(6):879–880CrossRef Brofman PJ, Ansell GS (1978) On the effect of carbon on the stacking fault energy of austenitic stainless steels. Metall Trans A 9(6):879–880CrossRef
195.
Zurück zum Zitat Abbasi A, Dick A, Hickel T, Neugebauer J (2011) First-principles investigation of the effect of carbon on the stacking fault energy of Fe–C alloys. Acta Mater 59(8):3041–3048CrossRef Abbasi A, Dick A, Hickel T, Neugebauer J (2011) First-principles investigation of the effect of carbon on the stacking fault energy of Fe–C alloys. Acta Mater 59(8):3041–3048CrossRef
196.
Zurück zum Zitat Gholizadeh H, Draxl C, Puschnig P (2013) The influence of interstitial carbon on the γ-surface in austenite. Acta Mater 61(1):341–349CrossRef Gholizadeh H, Draxl C, Puschnig P (2013) The influence of interstitial carbon on the γ-surface in austenite. Acta Mater 61(1):341–349CrossRef
197.
Zurück zum Zitat Jun J-H, Choi C-S (1998) Variation of stacking fault energy with austenite grain size and its effect on the MS temperature of γ → ε martensitic transformation in Fe–Mn alloy. Mater Sci Eng A 257(2):353–356CrossRef Jun J-H, Choi C-S (1998) Variation of stacking fault energy with austenite grain size and its effect on the MS temperature of γ → ε martensitic transformation in Fe–Mn alloy. Mater Sci Eng A 257(2):353–356CrossRef
198.
Zurück zum Zitat Takaki S, Nakatsu H, Tokunaga Y (1993) Effects of austenite grain size on ε martensitic transformation in Fe–15mass%Mn alloy. Mater Trans JIM 34(6):489–495CrossRef Takaki S, Nakatsu H, Tokunaga Y (1993) Effects of austenite grain size on ε martensitic transformation in Fe–15mass%Mn alloy. Mater Trans JIM 34(6):489–495CrossRef
199.
Zurück zum Zitat Lee T, Koyama M, Tsuzaki K, Lee Y-H, Lee CS (2012) Tensile deformation behavior of Fe–Mn–C TWIP steel with ultrafine elongated grain structure. Mater Lett 75:169–171CrossRef Lee T, Koyama M, Tsuzaki K, Lee Y-H, Lee CS (2012) Tensile deformation behavior of Fe–Mn–C TWIP steel with ultrafine elongated grain structure. Mater Lett 75:169–171CrossRef
200.
Zurück zum Zitat Ueji R, Tsuchida N, Terada D, Tsuji N, Tanaka Y, Takemura A, Kunishige K (2008) Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure. Scr Mater 59(9):963–966CrossRef Ueji R, Tsuchida N, Terada D, Tsuji N, Tanaka Y, Takemura A, Kunishige K (2008) Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure. Scr Mater 59(9):963–966CrossRef
201.
Zurück zum Zitat Kwon EP, Kim DY, Park HK (2017) Deformation twinning in Nb-microalloyed Fe–Mn–C–Al twinning-induced plasticity steel. J Mater Eng Perform 26(9):4500–4507CrossRef Kwon EP, Kim DY, Park HK (2017) Deformation twinning in Nb-microalloyed Fe–Mn–C–Al twinning-induced plasticity steel. J Mater Eng Perform 26(9):4500–4507CrossRef
202.
Zurück zum Zitat Curtze S, Kuokkala VT (2010) Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater 58(15):5129–5141CrossRef Curtze S, Kuokkala VT (2010) Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater 58(15):5129–5141CrossRef
203.
Zurück zum Zitat Rodríguez V, Jiménez JA, Adeva P, Bohórquez A, Pérez G, Fernández B, Chao J (1998) Propiedades mecánicas y mecanismos de deformación en aleaciones del sistemas Fe-xMn-3, 2Al-0, 2C (12 ≤ x ≤ 43). Rev Metal 34(1):362–366CrossRef Rodríguez V, Jiménez JA, Adeva P, Bohórquez A, Pérez G, Fernández B, Chao J (1998) Propiedades mecánicas y mecanismos de deformación en aleaciones del sistemas Fe-xMn-3, 2Al-0, 2C (12 ≤ x ≤ 43). Rev Metal 34(1):362–366CrossRef
204.
Zurück zum Zitat Li D, Feng Y, Song S, Liu Q, Bai Q, Ren F, Shangguan F (2015) Influences of silicon on the work hardening behavior and hot deformation behavior of Fe–25 wt%Mn–(Si, Al) TWIP steel. J Alloys Compd 618:768–775CrossRef Li D, Feng Y, Song S, Liu Q, Bai Q, Ren F, Shangguan F (2015) Influences of silicon on the work hardening behavior and hot deformation behavior of Fe–25 wt%Mn–(Si, Al) TWIP steel. J Alloys Compd 618:768–775CrossRef
205.
Zurück zum Zitat Bambach M, Conrads L, Daamen M, Güvenç O, Hirt G (2016) Enhancing the crashworthiness of high-manganese steel by strain-hardening engineering, and tailored folding by local heat-treatment. Mater Des 110:157–168CrossRef Bambach M, Conrads L, Daamen M, Güvenç O, Hirt G (2016) Enhancing the crashworthiness of high-manganese steel by strain-hardening engineering, and tailored folding by local heat-treatment. Mater Des 110:157–168CrossRef
206.
Zurück zum Zitat Ma B, Li C, Zheng J, Song Y, Han Y (2016) Strain hardening behavior and deformation substructure of Fe–20/27Mn–4Al–0.3C non-magnetic steels. Mater Des 92:313–321CrossRef Ma B, Li C, Zheng J, Song Y, Han Y (2016) Strain hardening behavior and deformation substructure of Fe–20/27Mn–4Al–0.3C non-magnetic steels. Mater Des 92:313–321CrossRef
207.
Zurück zum Zitat Zhao C, Song R, Zhang L, Yang F, Qin S (2015) Research on fluctuations in work hardening rate of a Fe–Mn–Al–C steel. Mater Sci Forum 817:288–292CrossRef Zhao C, Song R, Zhang L, Yang F, Qin S (2015) Research on fluctuations in work hardening rate of a Fe–Mn–Al–C steel. Mater Sci Forum 817:288–292CrossRef
208.
Zurück zum Zitat Wang D, Wang K, Luo M, Yang J, Han F (2015) Microstructure evolution and strain hardening behavior during plastic deformation of directionally solidified twinning-induced plasticity steel. Mater Des 66:627–634CrossRef Wang D, Wang K, Luo M, Yang J, Han F (2015) Microstructure evolution and strain hardening behavior during plastic deformation of directionally solidified twinning-induced plasticity steel. Mater Des 66:627–634CrossRef
209.
Zurück zum Zitat Shterner V, Timokhina IB, Beladi H (2016) On the work-hardening behaviour of a high manganese TWIP steel at different deformation temperatures. Mater Sci Eng A 669:437–446CrossRef Shterner V, Timokhina IB, Beladi H (2016) On the work-hardening behaviour of a high manganese TWIP steel at different deformation temperatures. Mater Sci Eng A 669:437–446CrossRef
210.
Zurück zum Zitat Wolf S, Martin S, Krüger L, Martin U (2014) Constitutive modelling of the rate dependent flow stress of cast high-alloyed metastable austenitic TRIP/TWIP steel. Mater Sci Eng A 594:72–81CrossRef Wolf S, Martin S, Krüger L, Martin U (2014) Constitutive modelling of the rate dependent flow stress of cast high-alloyed metastable austenitic TRIP/TWIP steel. Mater Sci Eng A 594:72–81CrossRef
211.
Zurück zum Zitat Narutani T, Olson G, Cohen M (1982) Constitutive flow relations for austenitic steels during straininduced martensitic transformation. J Phys Colloq 43(C4):C4-429–C4-434CrossRef Narutani T, Olson G, Cohen M (1982) Constitutive flow relations for austenitic steels during straininduced martensitic transformation. J Phys Colloq 43(C4):C4-429–C4-434CrossRef
212.
Zurück zum Zitat Wang Y, Sun X, Wang Y, Zbib H (2015) Effects of Mn content on the deformation behavior of Fe–Mn–Al–C TWIP steels—a computational study. J Eng Mater Technol 137(2):021001CrossRef Wang Y, Sun X, Wang Y, Zbib H (2015) Effects of Mn content on the deformation behavior of Fe–Mn–Al–C TWIP steels—a computational study. J Eng Mater Technol 137(2):021001CrossRef
213.
Zurück zum Zitat Liang R, Khan AS (1999) A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. Int J Plast 15(9):963–980CrossRef Liang R, Khan AS (1999) A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. Int J Plast 15(9):963–980CrossRef
214.
Zurück zum Zitat Kocks UF, Mecking H (2003) Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 48(3):171–273CrossRef Kocks UF, Mecking H (2003) Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 48(3):171–273CrossRef
215.
Zurück zum Zitat Rollett AD, Kocks U (1993) A review of the stages of work hardening. In: Rabier J, George A, Bréchet Y, Solid KL (eds) State phenomena. Trans Tech Publication, Zurich Rollett AD, Kocks U (1993) A review of the stages of work hardening. In: Rabier J, George A, Bréchet Y, Solid KL (eds) State phenomena. Trans Tech Publication, Zurich
216.
Zurück zum Zitat Püschl W (2002) Models for dislocation cross-slip in close-packed crystal structures: a critical review. Prog Mater Sci 47(4):415–461CrossRef Püschl W (2002) Models for dislocation cross-slip in close-packed crystal structures: a critical review. Prog Mater Sci 47(4):415–461CrossRef
217.
Zurück zum Zitat Dini G, Ueji R, Najafizadeh A, Monir-Vaghefi SM (2010) Flow stress analysis of TWIP steel via the XRD measurement of dislocation density. Mater Sci Eng A 527(10–11):2759–2763CrossRef Dini G, Ueji R, Najafizadeh A, Monir-Vaghefi SM (2010) Flow stress analysis of TWIP steel via the XRD measurement of dislocation density. Mater Sci Eng A 527(10–11):2759–2763CrossRef
218.
Zurück zum Zitat Zhou P, Huang MX (2015) On the mechanisms of different work-hardening stages in twinning-induced plasticity steels. Metall Mater Trans A 46(11):5080–5090CrossRef Zhou P, Huang MX (2015) On the mechanisms of different work-hardening stages in twinning-induced plasticity steels. Metall Mater Trans A 46(11):5080–5090CrossRef
219.
Zurück zum Zitat Owen WS, Grujicic M (1998) Strain aging of austenitic Hadfield manganese steel. Acta Mater 47(1):111–126CrossRef Owen WS, Grujicic M (1998) Strain aging of austenitic Hadfield manganese steel. Acta Mater 47(1):111–126CrossRef
220.
Zurück zum Zitat Shun T, Wan CM, Byrne JG (1992) A study of work hardening in austenitic Fe–Mn–C and Fe–Mn–Al–C alloys. Acta Metall Mater 40(12):3407–3412CrossRef Shun T, Wan CM, Byrne JG (1992) A study of work hardening in austenitic Fe–Mn–C and Fe–Mn–Al–C alloys. Acta Metall Mater 40(12):3407–3412CrossRef
221.
Zurück zum Zitat Caillard D (2016) Dynamic strain ageing in iron alloys: the shielding effect of carbon. Acta Mater 112:273–284CrossRef Caillard D (2016) Dynamic strain ageing in iron alloys: the shielding effect of carbon. Acta Mater 112:273–284CrossRef
222.
Zurück zum Zitat Liang ZY, Li YZ, Huang MX (2016) The respective hardening contributions of dislocations and twins to the flow stress of a twinning-induced plasticity steel. Scr Mater 112:28–31CrossRef Liang ZY, Li YZ, Huang MX (2016) The respective hardening contributions of dislocations and twins to the flow stress of a twinning-induced plasticity steel. Scr Mater 112:28–31CrossRef
223.
Zurück zum Zitat Zhou P, Liang ZY, Liu RD, Huang MX (2016) Evolution of dislocations and twins in a strong and ductile nanotwinned steel. Acta Mater 111:96–107CrossRef Zhou P, Liang ZY, Liu RD, Huang MX (2016) Evolution of dislocations and twins in a strong and ductile nanotwinned steel. Acta Mater 111:96–107CrossRef
224.
Zurück zum Zitat Shun TS, Wan CM, Byrne JG (1991) Serrated flow in austenitic Fe–Mn–C and Fe–Mn–Al–C alloys. Scr Metall Mater 25(8):1769–1774CrossRef Shun TS, Wan CM, Byrne JG (1991) Serrated flow in austenitic Fe–Mn–C and Fe–Mn–Al–C alloys. Scr Metall Mater 25(8):1769–1774CrossRef
225.
Zurück zum Zitat Yang CL, Zhang ZJ, Zhang P, Zhang ZF (2017) The premature necking of twinning-induced plasticity steels. Acta Mater 136:1–10CrossRef Yang CL, Zhang ZJ, Zhang P, Zhang ZF (2017) The premature necking of twinning-induced plasticity steels. Acta Mater 136:1–10CrossRef
226.
Zurück zum Zitat Ding H, Han D, Cai Z, Wu Z (2014) Microstructures and mechanical behavior of Fe–18Mn–10Al–(0.8–1.2)C steels. JOM 66(9):1821–1827CrossRef Ding H, Han D, Cai Z, Wu Z (2014) Microstructures and mechanical behavior of Fe–18Mn–10Al–(0.8–1.2)C steels. JOM 66(9):1821–1827CrossRef
227.
Zurück zum Zitat Hamada AS (2007) Manufacturing, mechanical properties and corrosion behaviour of high Mn TWIP steels. Acta Univ Ouluensis C 281:1–51 Hamada AS (2007) Manufacturing, mechanical properties and corrosion behaviour of high Mn TWIP steels. Acta Univ Ouluensis C 281:1–51
229.
Zurück zum Zitat Hwang SW, Ji JH, Park K-T (2011) Effects of Al addition on high strain rate deformation of fully austenitic high Mn steels. Mater Sci Eng A 528(24):7267–7275CrossRef Hwang SW, Ji JH, Park K-T (2011) Effects of Al addition on high strain rate deformation of fully austenitic high Mn steels. Mater Sci Eng A 528(24):7267–7275CrossRef
230.
Zurück zum Zitat Abbasi M, Kheirandish S, Kharrazi Y, Hejazi J (2010) On the comparison of the abrasive wear behavior of aluminum alloyed and standard Hadfield steels. Wear 268(1–2):202–207CrossRef Abbasi M, Kheirandish S, Kharrazi Y, Hejazi J (2010) On the comparison of the abrasive wear behavior of aluminum alloyed and standard Hadfield steels. Wear 268(1–2):202–207CrossRef
231.
Zurück zum Zitat Canadinc D, Sehitoglu H, Maier HJ, Chumlyakov YI (2005) Strain hardening behavior of aluminum alloyed Hadfield steel single crystals. Acta Mater 53(6):1831–1842CrossRef Canadinc D, Sehitoglu H, Maier HJ, Chumlyakov YI (2005) Strain hardening behavior of aluminum alloyed Hadfield steel single crystals. Acta Mater 53(6):1831–1842CrossRef
232.
Zurück zum Zitat Jin J-E, Lee Y-K (2011) Microstructure and mechanical properties of Al-added high Mn austenitic steel. In: Weng Y, Dong H, Gan Y (eds) Advanced steels. Springer, Berlin, pp 259–264CrossRef Jin J-E, Lee Y-K (2011) Microstructure and mechanical properties of Al-added high Mn austenitic steel. In: Weng Y, Dong H, Gan Y (eds) Advanced steels. Springer, Berlin, pp 259–264CrossRef
233.
Zurück zum Zitat McGrath MC, Van Aken DC, Medvedeva NI, Medvedeva JE (2013) Work hardening behavior in steel with multiple TRIP mechanisms. Metall Mater Trans A 44(10):4634–4643CrossRef McGrath MC, Van Aken DC, Medvedeva NI, Medvedeva JE (2013) Work hardening behavior in steel with multiple TRIP mechanisms. Metall Mater Trans A 44(10):4634–4643CrossRef
234.
Zurück zum Zitat Park J, Kang M, Sohn SS, Kim S-H, Kim HS, Kim NJ, Lee S (2017) Quasi-static and dynamic deformation mechanisms interpreted by microstructural evolution in Twinning Induced Plasticity (TWIP) steel. Mater Sci Eng A 684:54–63CrossRef Park J, Kang M, Sohn SS, Kim S-H, Kim HS, Kim NJ, Lee S (2017) Quasi-static and dynamic deformation mechanisms interpreted by microstructural evolution in Twinning Induced Plasticity (TWIP) steel. Mater Sci Eng A 684:54–63CrossRef
235.
Zurück zum Zitat Liu FC, Yang ZN, Zheng CL, Zhang FC (2012) Simultaneously improving the strength and ductility of coarse-grained Hadfield steel with increasing strain rate. Scr Mater 66(7):431–434CrossRef Liu FC, Yang ZN, Zheng CL, Zhang FC (2012) Simultaneously improving the strength and ductility of coarse-grained Hadfield steel with increasing strain rate. Scr Mater 66(7):431–434CrossRef
236.
Zurück zum Zitat Liang ZY, Wang X, Huang W, Huang MX (2015) Strain rate sensitivity and evolution of dislocations and twins in a twinning-induced plasticity steel. Acta Mater 88:170–179CrossRef Liang ZY, Wang X, Huang W, Huang MX (2015) Strain rate sensitivity and evolution of dislocations and twins in a twinning-induced plasticity steel. Acta Mater 88:170–179CrossRef
237.
Zurück zum Zitat Luo ZC, Huang MX (2018) Revisit the role of deformation twins on the work-hardening behaviour of twinning-induced plasticity steels. Scr Mater 142:28–31CrossRef Luo ZC, Huang MX (2018) Revisit the role of deformation twins on the work-hardening behaviour of twinning-induced plasticity steels. Scr Mater 142:28–31CrossRef
238.
Zurück zum Zitat Yang HK, Zhang ZJ, Tian YZ, Zhang ZF (2017) Negative to positive transition of strain rate sensitivity in Fe–22Mn–0.6C–x(Al) twinning-induced plasticity steels. Mater Sci Eng A 690:146–157CrossRef Yang HK, Zhang ZJ, Tian YZ, Zhang ZF (2017) Negative to positive transition of strain rate sensitivity in Fe–22Mn–0.6C–x(Al) twinning-induced plasticity steels. Mater Sci Eng A 690:146–157CrossRef
239.
Zurück zum Zitat De Cooman BC, Estrin Y, Kim SK (2018) Twinning-induced plasticity (TWIP) steels. Acta Mater 142:283–362CrossRef De Cooman BC, Estrin Y, Kim SK (2018) Twinning-induced plasticity (TWIP) steels. Acta Mater 142:283–362CrossRef
240.
Zurück zum Zitat Bouaziz O, Allain S, Scott CP, Cugy P, Barbier D (2011) High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships. Curr Opin Solid State Mater Sci 15(4):141–168CrossRef Bouaziz O, Allain S, Scott CP, Cugy P, Barbier D (2011) High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships. Curr Opin Solid State Mater Sci 15(4):141–168CrossRef
241.
Zurück zum Zitat Choi K, Seo C-H, Lee H, Kim SK, Kwak JH, Chin KG, Park K-T, Kim NJ (2010) Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe–28Mn–9Al–0.8C steel. Scr Mater 63(10):1028–1031CrossRef Choi K, Seo C-H, Lee H, Kim SK, Kwak JH, Chin KG, Park K-T, Kim NJ (2010) Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe–28Mn–9Al–0.8C steel. Scr Mater 63(10):1028–1031CrossRef
242.
Zurück zum Zitat Wu ZQ, Ding H, An XH, Han D, Liao XZ (2015) Influence of Al content on the strain-hardening behavior of aged low density Fe–Mn–Al–C steels with high Al content. Mater Sci Eng A 639:187–191CrossRef Wu ZQ, Ding H, An XH, Han D, Liao XZ (2015) Influence of Al content on the strain-hardening behavior of aged low density Fe–Mn–Al–C steels with high Al content. Mater Sci Eng A 639:187–191CrossRef
243.
Zurück zum Zitat Hua D, Huaying L, Zhiqiang W, Mingli H, Haoze L, Qibin X (2013) Microstructural evolution and deformation behaviors of Fe–Mn–Al–C steels with different stacking fault energies. Steel Res Int 84(12):1288–1293CrossRef Hua D, Huaying L, Zhiqiang W, Mingli H, Haoze L, Qibin X (2013) Microstructural evolution and deformation behaviors of Fe–Mn–Al–C steels with different stacking fault energies. Steel Res Int 84(12):1288–1293CrossRef
244.
Zurück zum Zitat Hwang J-K, Yi I-C, Son I-H, Yoo J-Y, Kim B, Zargaran A, Kim NJ (2015) Microstructural evolution and deformation behavior of twinning-induced plasticity (TWIP) steel during wire drawing. Mater Sci Eng A 644:41–52CrossRef Hwang J-K, Yi I-C, Son I-H, Yoo J-Y, Kim B, Zargaran A, Kim NJ (2015) Microstructural evolution and deformation behavior of twinning-induced plasticity (TWIP) steel during wire drawing. Mater Sci Eng A 644:41–52CrossRef
245.
Zurück zum Zitat Yang HK, Zhang ZJ, Zhang ZF (2013) Comparison of work hardening and deformation twinning evolution in Fe–22Mn–0.6C–(1.5Al) twinning-induced plasticity steels. Scr Mater 68(12):992–995CrossRef Yang HK, Zhang ZJ, Zhang ZF (2013) Comparison of work hardening and deformation twinning evolution in Fe–22Mn–0.6C–(1.5Al) twinning-induced plasticity steels. Scr Mater 68(12):992–995CrossRef
246.
Zurück zum Zitat Galindo-Nava EI, Rivera-Díaz-del-Castillo PEJ (2017) Understanding martensite and twin formation in austenitic steels: a model describing TRIP and TWIP effects. Acta Mater 128:120–134CrossRef Galindo-Nava EI, Rivera-Díaz-del-Castillo PEJ (2017) Understanding martensite and twin formation in austenitic steels: a model describing TRIP and TWIP effects. Acta Mater 128:120–134CrossRef
247.
Zurück zum Zitat Huang TT, Dan WJ, Zhang WG (2017) Study on the strain hardening behaviors of TWIP/TRIP steels. Metall Mater Trans A 48(10):4553–4564CrossRef Huang TT, Dan WJ, Zhang WG (2017) Study on the strain hardening behaviors of TWIP/TRIP steels. Metall Mater Trans A 48(10):4553–4564CrossRef
249.
Zurück zum Zitat Hamada AS, Karjalainen LP, Puustinen J (2009) Fatigue behavior of high-Mn TWIP steels. Mater Sci Eng A 517(1–2):68–77CrossRef Hamada AS, Karjalainen LP, Puustinen J (2009) Fatigue behavior of high-Mn TWIP steels. Mater Sci Eng A 517(1–2):68–77CrossRef
250.
Zurück zum Zitat Hamada AS, Karjalainen LP (2010) High-cycle fatigue behavior of ultrafine-grained austenitic stainless and TWIP steels. Mater Sci Eng A 527(21–22):5715–5722CrossRef Hamada AS, Karjalainen LP (2010) High-cycle fatigue behavior of ultrafine-grained austenitic stainless and TWIP steels. Mater Sci Eng A 527(21–22):5715–5722CrossRef
251.
Zurück zum Zitat Christodoulou PI, Kermanidis AT, Krizan D (2016) Fatigue behavior and retained austenite transformation of Al-containing TRIP steels. Int J Fatigue 91(Part 1):220–231CrossRef Christodoulou PI, Kermanidis AT, Krizan D (2016) Fatigue behavior and retained austenite transformation of Al-containing TRIP steels. Int J Fatigue 91(Part 1):220–231CrossRef
252.
Zurück zum Zitat Cheng X, Petrov R, Zhao L, Janssen M (2008) Fatigue crack growth in TRIP steel under positive R-ratios. Eng Fract Mech 75(3–4):739–749CrossRef Cheng X, Petrov R, Zhao L, Janssen M (2008) Fatigue crack growth in TRIP steel under positive R-ratios. Eng Fract Mech 75(3–4):739–749CrossRef
253.
Zurück zum Zitat Glage A, Weidner A, Biermann H (2010) Effect of austenite stability on the low cycle fatigue behavior and microstructure of high alloyed metastable austenitic cast TRIPsteels. Procedia Eng 2(1):2085–2094CrossRef Glage A, Weidner A, Biermann H (2010) Effect of austenite stability on the low cycle fatigue behavior and microstructure of high alloyed metastable austenitic cast TRIPsteels. Procedia Eng 2(1):2085–2094CrossRef
254.
Zurück zum Zitat Haidemenopoulos GN, Kermanidis AT, Malliaros C, Dickert HH, Kucharzyk P, Bleck W (2013) On the effect of austenite stability on high cycle fatigue of TRIP 700 steel. Mater Sci Eng A 573:7–11CrossRef Haidemenopoulos GN, Kermanidis AT, Malliaros C, Dickert HH, Kucharzyk P, Bleck W (2013) On the effect of austenite stability on high cycle fatigue of TRIP 700 steel. Mater Sci Eng A 573:7–11CrossRef
255.
Zurück zum Zitat Jacques P, Furnémont Q, Pardoen T, Delannay F (2001) On the role of martensitic transformation on damage and cracking resistance in TRIP-assisted multiphase steels. Acta Mater 49(1):139–152CrossRef Jacques P, Furnémont Q, Pardoen T, Delannay F (2001) On the role of martensitic transformation on damage and cracking resistance in TRIP-assisted multiphase steels. Acta Mater 49(1):139–152CrossRef
256.
Zurück zum Zitat Sugimoto K-I, Fiji D, Yoshikawa N (2010) Fatigue strength of newly developed high-strength low alloy TRIP-aided steels with good hardenability. Procedia Eng 2(1):359–362CrossRef Sugimoto K-I, Fiji D, Yoshikawa N (2010) Fatigue strength of newly developed high-strength low alloy TRIP-aided steels with good hardenability. Procedia Eng 2(1):359–362CrossRef
257.
Zurück zum Zitat Ju Y-B, Koyama M, Sawaguchi T, Tsuzaki K, Noguchi H (2016) In situ microscopic observations of low-cycle fatigue-crack propagation in high-Mn austenitic alloys with deformation-induced ε-martensitic transformation. Acta Mater 112:326–336CrossRef Ju Y-B, Koyama M, Sawaguchi T, Tsuzaki K, Noguchi H (2016) In situ microscopic observations of low-cycle fatigue-crack propagation in high-Mn austenitic alloys with deformation-induced ε-martensitic transformation. Acta Mater 112:326–336CrossRef
258.
Zurück zum Zitat Yang HK, Doquet V, Zhang ZF (2017) Fatigue crack growth in two TWIP steels with different stacking fault energies. Int J Fatigue 98:247–258CrossRef Yang HK, Doquet V, Zhang ZF (2017) Fatigue crack growth in two TWIP steels with different stacking fault energies. Int J Fatigue 98:247–258CrossRef
259.
Zurück zum Zitat Ma P, Qian L, Meng J, Liu S, Zhang F (2015) Influence of Al on the fatigue crack growth behavior of Fe–22Mn–(3Al)–0.6C TWIP steels. Mater Sci Eng A 645:136–141CrossRef Ma P, Qian L, Meng J, Liu S, Zhang F (2015) Influence of Al on the fatigue crack growth behavior of Fe–22Mn–(3Al)–0.6C TWIP steels. Mater Sci Eng A 645:136–141CrossRef
260.
Zurück zum Zitat Seo W, Jeong D, Sung H, Kim S (2017) Tensile and high cycle fatigue behaviors of high-Mn steels at 298 and 110 K. Mater Charact 124:65–72CrossRef Seo W, Jeong D, Sung H, Kim S (2017) Tensile and high cycle fatigue behaviors of high-Mn steels at 298 and 110 K. Mater Charact 124:65–72CrossRef
261.
Zurück zum Zitat Habib K, Koyama M, Noguchi H (2017) Impact of Mn–C couples on fatigue crack growth in austenitic steels: is the attractive atomic interaction negative or positive? Int J Fatigue 99(Part 1):1–12CrossRef Habib K, Koyama M, Noguchi H (2017) Impact of Mn–C couples on fatigue crack growth in austenitic steels: is the attractive atomic interaction negative or positive? Int J Fatigue 99(Part 1):1–12CrossRef
262.
Zurück zum Zitat Timmerscheidt TA, Dronskowski R (2017) An ab initio study of carbon-induced ordering in austenitic Fe–Mn–Al–C alloys. Steel Res Int 88(1):1600292CrossRef Timmerscheidt TA, Dronskowski R (2017) An ab initio study of carbon-induced ordering in austenitic Fe–Mn–Al–C alloys. Steel Res Int 88(1):1600292CrossRef
263.
Zurück zum Zitat Song SW, Kwon YJ, Lee T, Lee CS (2016) Effect of Al addition on low-cycle fatigue properties of hydrogen-charged high-Mn TWIP steels. Mater Sci Eng A 677:421–430CrossRef Song SW, Kwon YJ, Lee T, Lee CS (2016) Effect of Al addition on low-cycle fatigue properties of hydrogen-charged high-Mn TWIP steels. Mater Sci Eng A 677:421–430CrossRef
264.
Zurück zum Zitat Zuidema BK, Subramanyam DK, Leslie WC (1987) The effect of aluminum on the work hardening and wear resistance of hadfield manganese steel. Metall Trans A 18(9):1629–1639CrossRef Zuidema BK, Subramanyam DK, Leslie WC (1987) The effect of aluminum on the work hardening and wear resistance of hadfield manganese steel. Metall Trans A 18(9):1629–1639CrossRef
265.
Zurück zum Zitat Acselrad O, de Souza AR, Kalashnikov IS, Camargo SS (2004) A first evaluation of the abrasive wear of an austenitic FeMnAlC steel. Wear 257(9–10):999–1005CrossRef Acselrad O, de Souza AR, Kalashnikov IS, Camargo SS (2004) A first evaluation of the abrasive wear of an austenitic FeMnAlC steel. Wear 257(9–10):999–1005CrossRef
266.
Zurück zum Zitat Van Aken D, Bartlett LN, Buckholz SA (2013) On the influence of aluminum and carbon on abrasion resistance of high manganese steels. In: 117th metalcasting congress. Afsinc Van Aken D, Bartlett LN, Buckholz SA (2013) On the influence of aluminum and carbon on abrasion resistance of high manganese steels. In: 117th metalcasting congress. Afsinc
267.
Zurück zum Zitat Mejía I, Bedolla-Jacuinde A, Pablo JR (2013) Sliding wear behavior of a high-Mn austenitic twinning induced plasticity (TWIP) steel microalloyed with Nb. Wear 301(1–2):590–597CrossRef Mejía I, Bedolla-Jacuinde A, Pablo JR (2013) Sliding wear behavior of a high-Mn austenitic twinning induced plasticity (TWIP) steel microalloyed with Nb. Wear 301(1–2):590–597CrossRef
268.
Zurück zum Zitat Ramos J, Piamba JF, Sánchez H, Alcazar GAP (2015) Mossbauer and XRD characterization of the phase transformations in a Fe–Mn–Al–C–Mo–Si–Cu as cast alloy during tribology test. Hyperfine Interact 232(1–3):119–126CrossRef Ramos J, Piamba JF, Sánchez H, Alcazar GAP (2015) Mossbauer and XRD characterization of the phase transformations in a Fe–Mn–Al–C–Mo–Si–Cu as cast alloy during tribology test. Hyperfine Interact 232(1–3):119–126CrossRef
269.
Zurück zum Zitat Peng S-G, Song R-B, Sun T, Pei Z-Z, Cai C-H, Feng Y-F, Tan Z-D (2016) wear behavior and hardening mechanism of novel lightweight Fe–25.1Mn–6.6Al–1.3C steel under impact abrasion conditions. Tribol Lett 64(1):13CrossRef Peng S-G, Song R-B, Sun T, Pei Z-Z, Cai C-H, Feng Y-F, Tan Z-D (2016) wear behavior and hardening mechanism of novel lightweight Fe–25.1Mn–6.6Al–1.3C steel under impact abrasion conditions. Tribol Lett 64(1):13CrossRef
270.
Zurück zum Zitat Zambrano OA, Aguilar Y, Valdés J, Rodríguez SA, Coronado JJ (2016) Effect of normal load on abrasive wear resistance and wear micromechanisms in FeMnAlC alloy and other austenitic steels. Wear 348–349:61–68CrossRef Zambrano OA, Aguilar Y, Valdés J, Rodríguez SA, Coronado JJ (2016) Effect of normal load on abrasive wear resistance and wear micromechanisms in FeMnAlC alloy and other austenitic steels. Wear 348–349:61–68CrossRef
271.
Zurück zum Zitat Astudillo A, Soriano G, Osorio B, Sánchez Sthepa H, Ramos J, Durán JF, Pérez Alcázar GA (2017) Comparative study of the mechanical and tribological properties of a Hadfield and a Fermanal steel. Hyperfine Interact 238(1):56CrossRef Astudillo A, Soriano G, Osorio B, Sánchez Sthepa H, Ramos J, Durán JF, Pérez Alcázar GA (2017) Comparative study of the mechanical and tribological properties of a Hadfield and a Fermanal steel. Hyperfine Interact 238(1):56CrossRef
272.
Zurück zum Zitat Buckholz SA (2017) High manganese steel with enhanced wear and impact characteristics (Patent WO2017070273 A1). Google Patents Buckholz SA (2017) High manganese steel with enhanced wear and impact characteristics (Patent WO2017070273 A1). Google Patents
273.
Zurück zum Zitat Woodford DA (1972) Cavitation-erosion-lnduced phase transformations in alloys. Metall Trans 3(5):1137–1145CrossRef Woodford DA (1972) Cavitation-erosion-lnduced phase transformations in alloys. Metall Trans 3(5):1137–1145CrossRef
274.
Zurück zum Zitat Heathcock CJ, Protheroe BE, Ball A (1982) Cavitation erosion of stainless steels. Wear 81(2):311–327CrossRef Heathcock CJ, Protheroe BE, Ball A (1982) Cavitation erosion of stainless steels. Wear 81(2):311–327CrossRef
275.
Zurück zum Zitat Kwok CT, Man HC, Cheng FT (1998) Cavitation erosion of duplex and super duplex stainless steels. Scr Mater 39(9):1229–1236CrossRef Kwok CT, Man HC, Cheng FT (1998) Cavitation erosion of duplex and super duplex stainless steels. Scr Mater 39(9):1229–1236CrossRef
276.
Zurück zum Zitat Wang Z, Zhu J (2004) Correlation of martensitic transformation and surface mechanical behavior with cavitation erosion resistance for some iron-based alloys. Wear 256(11):1208–1213CrossRef Wang Z, Zhu J (2004) Correlation of martensitic transformation and surface mechanical behavior with cavitation erosion resistance for some iron-based alloys. Wear 256(11):1208–1213CrossRef
277.
Zurück zum Zitat Yun JY, Shin GS, Park MC, Lee HS, Kang WS, Kim SJ (2015) Effect of strain-induced ε and α′-martensitic transformation on cavitation erosion resistance in austenitic Fe–Cr–C–MnFe–Cr–C–Mnti alloys. Wear 338–339:379–384CrossRef Yun JY, Shin GS, Park MC, Lee HS, Kang WS, Kim SJ (2015) Effect of strain-induced ε and α′-martensitic transformation on cavitation erosion resistance in austenitic Fe–Cr–C–MnFe–Cr–C–Mnti alloys. Wear 338–339:379–384CrossRef
278.
Zurück zum Zitat Chang SC, Weng WH, Chen HC, Lin SJ, Chung PCK (1995) The cavitation erosion of Fe·Mn·Al alloys. Wear 181–183:511–515 Chang SC, Weng WH, Chen HC, Lin SJ, Chung PCK (1995) The cavitation erosion of Fe·Mn·Al alloys. Wear 181–183:511–515
279.
Zurück zum Zitat Huang H-H, Chuang T-H (2000) Erosion- and wear-corrosion behavior of Fe–Mn–Al alloys in NaCl solution. Mater Sci Eng A 292(1):90–95CrossRef Huang H-H, Chuang T-H (2000) Erosion- and wear-corrosion behavior of Fe–Mn–Al alloys in NaCl solution. Mater Sci Eng A 292(1):90–95CrossRef
280.
Zurück zum Zitat Aperador W, Bautista JH, Betancur JD (2012) Resistencia Al desgaste erosivo-corrosivo de aceros austeníticos fermanal. Rev EIA 18(18):49–59 Aperador W, Bautista JH, Betancur JD (2012) Resistencia Al desgaste erosivo-corrosivo de aceros austeníticos fermanal. Rev EIA 18(18):49–59
281.
Zurück zum Zitat Han SY, Shin SY, Lee S, Kim NJ, Kwak J-H, Chin K-G (2010) Effect of carbon content on cracking phenomenon occurring during cold rolling of three light-weight steel plates. Metall Mater Trans A 42(1):138–146CrossRef Han SY, Shin SY, Lee S, Kim NJ, Kwak J-H, Chin K-G (2010) Effect of carbon content on cracking phenomenon occurring during cold rolling of three light-weight steel plates. Metall Mater Trans A 42(1):138–146CrossRef
282.
Zurück zum Zitat Shin SY, Lee H, Han SY, Seo C-H, Choi K, Lee S, Kim NJ, Kwak J-H, Chin K-G (2009) Correlation of microstructure and cracking phenomenon occurring during hot rolling of lightweight steel plates. Metall Mater Trans A 41(1):138–148CrossRef Shin SY, Lee H, Han SY, Seo C-H, Choi K, Lee S, Kim NJ, Kwak J-H, Chin K-G (2009) Correlation of microstructure and cracking phenomenon occurring during hot rolling of lightweight steel plates. Metall Mater Trans A 41(1):138–148CrossRef
283.
Zurück zum Zitat Kim YG, Kim TW, Park SH (1997) Process for manufacturing high manganese hot rolled steel sheet without any crack. In: U.S. Patent (ed), Pohang Iron & Steel Co., Ltd. Research Institute of Industrial Science and Technology, Pohang. http://goo.gl/G3y9Ec Kim YG, Kim TW, Park SH (1997) Process for manufacturing high manganese hot rolled steel sheet without any crack. In: U.S. Patent (ed), Pohang Iron & Steel Co., Ltd. Research Institute of Industrial Science and Technology, Pohang. http://​goo.​gl/​G3y9Ec
284.
Zurück zum Zitat Wallwork GR (1983) Fermalloy (Fe–Mn–Al stainless steel). Google Patents Wallwork GR (1983) Fermalloy (Fe–Mn–Al stainless steel). Google Patents
285.
Zurück zum Zitat Kim TW, Han JK, Chang RW, Kim YG (1995) Manufacturing process for austenitic high manganese steel having superior formability, strengths and weldability (Patent US5431753). Google Patents Kim TW, Han JK, Chang RW, Kim YG (1995) Manufacturing process for austenitic high manganese steel having superior formability, strengths and weldability (Patent US5431753). Google Patents
286.
Zurück zum Zitat Liu TF (1990) Hot-rolled alloy steel plate and the method of making. US Patent 07/298,043. Google Patents Liu TF (1990) Hot-rolled alloy steel plate and the method of making. US Patent 07/298,043. Google Patents
287.
Zurück zum Zitat Liu C, Rana R (2013) Low density high strength steel and method for producing said steel. Patent WO2013034317 A1. Google Patents Liu C, Rana R (2013) Low density high strength steel and method for producing said steel. Patent WO2013034317 A1. Google Patents
288.
Zurück zum Zitat Zimmer JM, Bailey WD (1991) A luminium–manganese–iron steel alloy. Google Patents Zimmer JM, Bailey WD (1991) A luminium–manganese–iron steel alloy. Google Patents
289.
Zurück zum Zitat Chen S, Haldar A, Saeed-Akbari A, Mostert R (2017) Austenitic, low-density, high-strength steel strip or sheet having a high ductility, method for producing said steel and use thereof. Google Patents Chen S, Haldar A, Saeed-Akbari A, Mostert R (2017) Austenitic, low-density, high-strength steel strip or sheet having a high ductility, method for producing said steel and use thereof. Google Patents
290.
Zurück zum Zitat Frommeyer G, Bausch M, Hofmann H, Balichev E, Soler M, Didier M, Samek L (2013) Ultra high-strength and ductile Fe–Mn–Al–C light-weight steels (MnAl-steels). In: E. publications (ed) Grant agreement RFSR-CT-2006-00027 Frommeyer G, Bausch M, Hofmann H, Balichev E, Soler M, Didier M, Samek L (2013) Ultra high-strength and ductile Fe–Mn–Al–C light-weight steels (MnAl-steels). In: E. publications (ed) Grant agreement RFSR-CT-2006-00027
291.
Zurück zum Zitat Pickering EJ (2013) Macrosegregation in steel ingots: the applicability of modelling and characterisation techniques. ISIJ Int 53(6):935–949CrossRef Pickering EJ (2013) Macrosegregation in steel ingots: the applicability of modelling and characterisation techniques. ISIJ Int 53(6):935–949CrossRef
292.
Zurück zum Zitat Campbell FC (2008) Elements of metallurgy and engineering alloys. ASM International, Materials Park Campbell FC (2008) Elements of metallurgy and engineering alloys. ASM International, Materials Park
293.
Zurück zum Zitat Campbell FC (2012) Phase diagrams: understanding the basics. ASM International, Materials Park Campbell FC (2012) Phase diagrams: understanding the basics. ASM International, Materials Park
294.
Zurück zum Zitat Mazancová E, Ružiak I, Schindler I (2012) Influence of rolling conditions and aging process on mechanical properties of high manganese steels. Arch Civ Mech Eng 12(2):142–147CrossRef Mazancová E, Ružiak I, Schindler I (2012) Influence of rolling conditions and aging process on mechanical properties of high manganese steels. Arch Civ Mech Eng 12(2):142–147CrossRef
295.
Zurück zum Zitat Marandi A, Zarei-Hanzaki R, Zarei-Hanzaki A, Abedi HR (2014) Dynamic recrystallization behavior of new transformation–twinning induced plasticity steel. Mater Sci Eng A 607:397–408CrossRef Marandi A, Zarei-Hanzaki R, Zarei-Hanzaki A, Abedi HR (2014) Dynamic recrystallization behavior of new transformation–twinning induced plasticity steel. Mater Sci Eng A 607:397–408CrossRef
296.
Zurück zum Zitat Daamen M, Haase C, Dierdorf J, Molodov DA, Hirt G (2015) Twin-roll strip casting: a competitive alternative for the production of high-manganese steels with advanced mechanical properties. Mater Sci Eng A 627:72–81CrossRef Daamen M, Haase C, Dierdorf J, Molodov DA, Hirt G (2015) Twin-roll strip casting: a competitive alternative for the production of high-manganese steels with advanced mechanical properties. Mater Sci Eng A 627:72–81CrossRef
297.
Zurück zum Zitat Grajcar A, Opiela M, Fojt-Dymara G (2009) The influence of hot-working conditions on a structure of high-manganese steel. Arch Civ Mech Eng 9(3):49–58CrossRef Grajcar A, Opiela M, Fojt-Dymara G (2009) The influence of hot-working conditions on a structure of high-manganese steel. Arch Civ Mech Eng 9(3):49–58CrossRef
298.
Zurück zum Zitat Han KH, Kang T, Laughlin D (1988) Thermomechanical treatment of an Fe–Mn–Al–C sideband alloy. In: Proceedings of international conference with 1988 world materials congress, Chicago, IL Han KH, Kang T, Laughlin D (1988) Thermomechanical treatment of an Fe–Mn–Al–C sideband alloy. In: Proceedings of international conference with 1988 world materials congress, Chicago, IL
299.
Zurück zum Zitat Han KH (2000) The microstructures and mechanical properties of an austenitic Nb-bearing Fe–Mn–Al–C alloy processed by controlled rolling. Mater Sci Eng A 279(1–2):1–9CrossRef Han KH (2000) The microstructures and mechanical properties of an austenitic Nb-bearing Fe–Mn–Al–C alloy processed by controlled rolling. Mater Sci Eng A 279(1–2):1–9CrossRef
300.
Zurück zum Zitat Grajcar A, Borek W (2008) Thermo-mechanical processing of high-manganese austenitic TWIP-type steels. Arch Civ Mech Eng 8(4):29–38CrossRef Grajcar A, Borek W (2008) Thermo-mechanical processing of high-manganese austenitic TWIP-type steels. Arch Civ Mech Eng 8(4):29–38CrossRef
301.
Zurück zum Zitat Zamani D, Najafizadeh A, Monajati H, Razavi G (2011) The effect of thermo-mechanical treatment and adding niobium and titanium on microstructure and mechanical properties of TWIP steel. J Appl Phys Math 1(3):45–49 Zamani D, Najafizadeh A, Monajati H, Razavi G (2011) The effect of thermo-mechanical treatment and adding niobium and titanium on microstructure and mechanical properties of TWIP steel. J Appl Phys Math 1(3):45–49
302.
Zurück zum Zitat Hamada AS, Sahu P, Ghosh Chowdhury S, Karjalainen LP, Levoska J, Oittinen T (2007) Kinetics of the γ → ε martensitic transformation in fine-grained Fe–26Mn–0.14C austenitic steel. Metall Mater Trans A 39(2):462–465CrossRef Hamada AS, Sahu P, Ghosh Chowdhury S, Karjalainen LP, Levoska J, Oittinen T (2007) Kinetics of the γ → ε martensitic transformation in fine-grained Fe–26Mn–0.14C austenitic steel. Metall Mater Trans A 39(2):462–465CrossRef
303.
Zurück zum Zitat Hamada AS, Karjalainen LP (2011) Hot ductility behaviour of high-Mn TWIP steels. Mater Sci Eng A 528(3):1819–1827CrossRef Hamada AS, Karjalainen LP (2011) Hot ductility behaviour of high-Mn TWIP steels. Mater Sci Eng A 528(3):1819–1827CrossRef
304.
Zurück zum Zitat Dobrzański LA, Borek W (2012) Thermo-mechanical treatment of Fe–Mn–(Al, Si) TRIP/TWIP steels. Arch Civ Mech Eng 12(3):299–304CrossRef Dobrzański LA, Borek W (2012) Thermo-mechanical treatment of Fe–Mn–(Al, Si) TRIP/TWIP steels. Arch Civ Mech Eng 12(3):299–304CrossRef
305.
Zurück zum Zitat Khosravifard A, Hamada AS, Moshksar MM, Ebrahimi R, Porter DA, Karjalainen LP (2013) High temperature deformation behavior of two as-cast high-manganese TWIP steels. Mater Sci Eng A 582:15–21CrossRef Khosravifard A, Hamada AS, Moshksar MM, Ebrahimi R, Porter DA, Karjalainen LP (2013) High temperature deformation behavior of two as-cast high-manganese TWIP steels. Mater Sci Eng A 582:15–21CrossRef
306.
307.
Zurück zum Zitat Zambrano OA, Valdés J, Aguilar Y, Coronado JJ, Rodríguez SA, Logé RE (2017) Hot deformation of a Fe–Mn–Al–C steel susceptible of κ-carbide precipitation. Mater Sci Eng A 689:269–285CrossRef Zambrano OA, Valdés J, Aguilar Y, Coronado JJ, Rodríguez SA, Logé RE (2017) Hot deformation of a Fe–Mn–Al–C steel susceptible of κ-carbide precipitation. Mater Sci Eng A 689:269–285CrossRef
308.
Zurück zum Zitat Chou CP, Lee CH (1989) Tem studies of DO3 structure in Fe–30Mn–9Al–0.4C weld metal. Metallography 23(3):231–240CrossRef Chou CP, Lee CH (1989) Tem studies of DO3 structure in Fe–30Mn–9Al–0.4C weld metal. Metallography 23(3):231–240CrossRef
310.
Zurück zum Zitat Chou CP, Lee CH (1989) The influence of carbon content on austenite–ferrite morphology in Fe–Mn–Al weld metals. Metall Trans A Phys Metall Mater Sci 20(11):2559–2561CrossRef Chou CP, Lee CH (1989) The influence of carbon content on austenite–ferrite morphology in Fe–Mn–Al weld metals. Metall Trans A Phys Metall Mater Sci 20(11):2559–2561CrossRef
311.
Zurück zum Zitat Chou C-P, Lee C-H (1989) Weld metal characteristics of duplex Fe–30wt.%Mn–10wt.%Al–xC alloys. Mater Sci Eng A 118:137–146CrossRef Chou C-P, Lee C-H (1989) Weld metal characteristics of duplex Fe–30wt.%Mn–10wt.%Al–xC alloys. Mater Sci Eng A 118:137–146CrossRef
312.
Zurück zum Zitat Lin Y-L, Chou C-P (1993) D03–B2—α phase transition in an Fe–Mn–Al–C weldment. Scr Metall Mater 28(10):1261–1266CrossRef Lin Y-L, Chou C-P (1993) D03–B2—α phase transition in an Fe–Mn–Al–C weldment. Scr Metall Mater 28(10):1261–1266CrossRef
313.
Zurück zum Zitat Makhamreh K, Aidun D (1991) Mechanical properties of flux cored iron–manganese–aluminum weld metal. Weld J (USA) 71(3):104–114 Makhamreh K, Aidun D (1991) Mechanical properties of flux cored iron–manganese–aluminum weld metal. Weld J (USA) 71(3):104–114
314.
Zurück zum Zitat DeLong W (1974) Ferrite in austenitic stainless steel weld metal. Weld J 53(7):273–286 DeLong W (1974) Ferrite in austenitic stainless steel weld metal. Weld J 53(7):273–286
315.
Zurück zum Zitat Mújica Roncery L, Weber S, Theisen W (2012) Welding of twinning-induced plasticity steels. Scr Mater 66(12):997–1001CrossRef Mújica Roncery L, Weber S, Theisen W (2012) Welding of twinning-induced plasticity steels. Scr Mater 66(12):997–1001CrossRef
316.
Zurück zum Zitat Kang MJ, Kim YM, Han HN, Kim C (2017) Effects of phase evolution on mechanical properties of laser-welded ferritic Fe–Al–Mn–C steel. Metals 7(12):523CrossRef Kang MJ, Kim YM, Han HN, Kim C (2017) Effects of phase evolution on mechanical properties of laser-welded ferritic Fe–Al–Mn–C steel. Metals 7(12):523CrossRef
317.
Zurück zum Zitat Lun N, Saha DC, Macwan A, Pan H, Wang L, Goodwin F, Zhou Y (2017) Microstructure and mechanical properties of fibre laser welded medium manganese TRIP steel. Mater Des 131:450–459CrossRef Lun N, Saha DC, Macwan A, Pan H, Wang L, Goodwin F, Zhou Y (2017) Microstructure and mechanical properties of fibre laser welded medium manganese TRIP steel. Mater Des 131:450–459CrossRef
320.
Zurück zum Zitat Cavallini M, Felli F, Fratesi R, Veniaii F (1982) Aqueous solution corrosion behaviour of “poor man” high manganese–aluminum steels. Mater Corros/Werkstoffe und Korrosion 33(5):281–284CrossRef Cavallini M, Felli F, Fratesi R, Veniaii F (1982) Aqueous solution corrosion behaviour of “poor man” high manganese–aluminum steels. Mater Corros/Werkstoffe und Korrosion 33(5):281–284CrossRef
321.
Zurück zum Zitat Altstetter CJ, Bentley AP, Fourie JW, Kirkbride AN (1986) Processing and properties of Fe·Mn·Al alloys. Mater Sci Eng 82:13–25CrossRef Altstetter CJ, Bentley AP, Fourie JW, Kirkbride AN (1986) Processing and properties of Fe·Mn·Al alloys. Mater Sci Eng 82:13–25CrossRef
322.
Zurück zum Zitat Gau YJ, Wu JK (1992) Galvanic corrosion behaviour of Fe–Mn–Al alloys in sea water. J Mater Sci Lett 11(2):119–121CrossRef Gau YJ, Wu JK (1992) Galvanic corrosion behaviour of Fe–Mn–Al alloys in sea water. J Mater Sci Lett 11(2):119–121CrossRef
323.
Zurück zum Zitat Rfiscak M, Perng T (1993) Pitting of Fe–Mn–Al alloys in NaCl solution. J Manna SCIQHCS Technol 1(1):1–5 Rfiscak M, Perng T (1993) Pitting of Fe–Mn–Al alloys in NaCl solution. J Manna SCIQHCS Technol 1(1):1–5
324.
Zurück zum Zitat Shih ST, Tai CY, Perng TP (1993) Corrosion behavior of two-phase Fe–Mn–Al alloys in 3.5% NaCl solution. Corrosion 49(2):130–134CrossRef Shih ST, Tai CY, Perng TP (1993) Corrosion behavior of two-phase Fe–Mn–Al alloys in 3.5% NaCl solution. Corrosion 49(2):130–134CrossRef
325.
Zurück zum Zitat Zhu XM, Zhang YS (1998) Investigation of the electrochemical corrosion behavior and passive film for Fe–Mn, Fe–Mn–Al, and Fe–Mn–Al–Cr alloys in aqueous solutions. Corrosion 54(1):3–12CrossRef Zhu XM, Zhang YS (1998) Investigation of the electrochemical corrosion behavior and passive film for Fe–Mn, Fe–Mn–Al, and Fe–Mn–Al–Cr alloys in aqueous solutions. Corrosion 54(1):3–12CrossRef
326.
Zurück zum Zitat Zhang YS, Zhu XM (1999) Electrochemical polarization and passive film analysis of austenitic Fe–Mn–Al steels in aqueous solutions. Corros Sci 41(9):1817–1833CrossRef Zhang YS, Zhu XM (1999) Electrochemical polarization and passive film analysis of austenitic Fe–Mn–Al steels in aqueous solutions. Corros Sci 41(9):1817–1833CrossRef
327.
Zurück zum Zitat Zhu XM, Zhang YS (1998) An XPS study of passive film formation on Fe·30Mn·9Al alloy in sodium sulphate solution. Appl Surf Sci 125(1):11–16CrossRef Zhu XM, Zhang YS (1998) An XPS study of passive film formation on Fe·30Mn·9Al alloy in sodium sulphate solution. Appl Surf Sci 125(1):11–16CrossRef
328.
Zurück zum Zitat Abuzriba MB, Musa SM (2015) Substitution for chromium and nickel in austenitic stainless steels. In: 2nd international multidisciplinary microscopy and microanalysis congress. Springer, Berlin Abuzriba MB, Musa SM (2015) Substitution for chromium and nickel in austenitic stainless steels. In: 2nd international multidisciplinary microscopy and microanalysis congress. Springer, Berlin
329.
Zurück zum Zitat Tjong SC, Ku JS, Wu CS (1994) Corrosion behavior of laser consolidated chromium and molybdenum plasma spray coatings on Fe–28Mn–7Al–1C alloy. Scr Metall Mater 31(7):835–839CrossRef Tjong SC, Ku JS, Wu CS (1994) Corrosion behavior of laser consolidated chromium and molybdenum plasma spray coatings on Fe–28Mn–7Al–1C alloy. Scr Metall Mater 31(7):835–839CrossRef
330.
Zurück zum Zitat Tjong SC (1996) Performance of laser-consolidated plasma-spray coatings on Fe–28Mn–7A1–1C alloy. Thin Solid Films 274(1–2):95–100CrossRef Tjong SC (1996) Performance of laser-consolidated plasma-spray coatings on Fe–28Mn–7A1–1C alloy. Thin Solid Films 274(1–2):95–100CrossRef
331.
Zurück zum Zitat Lee JW, Duh JG, Tsai SY (2002) Corrosion resistance and microstructural evaluation of the chromized coating process in a dual phase Fe–Mn–Al–Cr alloy. Surf Coat Technol 153(1):59–66CrossRef Lee JW, Duh JG, Tsai SY (2002) Corrosion resistance and microstructural evaluation of the chromized coating process in a dual phase Fe–Mn–Al–Cr alloy. Surf Coat Technol 153(1):59–66CrossRef
332.
Zurück zum Zitat Zhang YS, Zhu XM, Zhong SH (2004) Effect of alloying elements on the electrochemical polarization behavior and passive film of Fe–Mn base alloys in various aqueous solutions. Corros Sci 46(4):853–876CrossRef Zhang YS, Zhu XM, Zhong SH (2004) Effect of alloying elements on the electrochemical polarization behavior and passive film of Fe–Mn base alloys in various aqueous solutions. Corros Sci 46(4):853–876CrossRef
333.
Zurück zum Zitat Wang CS, Tsai CY, Chao CG, Liu TF (2007) Effect of chromium content on corrosion behaviors of Fe–9Al–30Mn–(3,5,6.5,8)Cr–1C alloys. Mater Trans 48(11):2973–2977CrossRef Wang CS, Tsai CY, Chao CG, Liu TF (2007) Effect of chromium content on corrosion behaviors of Fe–9Al–30Mn–(3,5,6.5,8)Cr–1C alloys. Mater Trans 48(11):2973–2977CrossRef
334.
Zurück zum Zitat Hamada AS, Karjalainen LP (2006) Nitric acid resistance of new type Fe–Mn–Al stainless steels. Can Metall Q 45(1):41–48CrossRef Hamada AS, Karjalainen LP (2006) Nitric acid resistance of new type Fe–Mn–Al stainless steels. Can Metall Q 45(1):41–48CrossRef
335.
Zurück zum Zitat Tuan YH, Wang CS, Tsai CY, Chao CG, Liu TF (2009) Corrosion behaviors of austenitic Fe–30Mn–7Al–xCr–1C alloys in 3.5% NaCl solution. Mater Chem Phys 114(2–3):595–598CrossRef Tuan YH, Wang CS, Tsai CY, Chao CG, Liu TF (2009) Corrosion behaviors of austenitic Fe–30Mn–7Al–xCr–1C alloys in 3.5% NaCl solution. Mater Chem Phys 114(2–3):595–598CrossRef
336.
Zurück zum Zitat Aperador W, Caicedo JC, Vera R (2013) Assessment of the corrosion resistance of fermanal steel coated with TiC(N)/TiNb(CN) heterostructures for use as a biomaterial. Int J Electrochem Sci 8(2):2778–2790 Aperador W, Caicedo JC, Vera R (2013) Assessment of the corrosion resistance of fermanal steel coated with TiC(N)/TiNb(CN) heterostructures for use as a biomaterial. Int J Electrochem Sci 8(2):2778–2790
337.
Zurück zum Zitat Dieudonne T, Marchetti L, Wery M, Miserque F, Tabarant M, Chene J, Allely C, Cugy P, Scott CP (2014) Role of copper and aluminum on the corrosion behavior of austenitic Fe–Mn–C TWIP steels in aqueous solutions and the related hydrogen absorption. Corros Sci 83:234–244CrossRef Dieudonne T, Marchetti L, Wery M, Miserque F, Tabarant M, Chene J, Allely C, Cugy P, Scott CP (2014) Role of copper and aluminum on the corrosion behavior of austenitic Fe–Mn–C TWIP steels in aqueous solutions and the related hydrogen absorption. Corros Sci 83:234–244CrossRef
338.
Zurück zum Zitat Chen YC, Lin CL, Chao CG, Liu TF (2015) Excellent enhancement of corrosion properties of Fe–9Al–30Mn–1.8C alloy in 3.5% NaCl and 10% HCl aqueous solutions using gas nitriding treatment. J Alloys Compd 633:137–144CrossRef Chen YC, Lin CL, Chao CG, Liu TF (2015) Excellent enhancement of corrosion properties of Fe–9Al–30Mn–1.8C alloy in 3.5% NaCl and 10% HCl aqueous solutions using gas nitriding treatment. J Alloys Compd 633:137–144CrossRef
339.
Zurück zum Zitat Yuan X, Zhao Y, Li X, Chen L (2017) Effect of Cr on mechanical properties and corrosion behaviors of Fe–Mn–C–Al–Cr–N TWIP steels. J Mater Sci Technol 33:1555–1560CrossRef Yuan X, Zhao Y, Li X, Chen L (2017) Effect of Cr on mechanical properties and corrosion behaviors of Fe–Mn–C–Al–Cr–N TWIP steels. J Mater Sci Technol 33:1555–1560CrossRef
340.
Zurück zum Zitat Hamada A, Karjalainen L, El-Zeky M, Philippe M, Vincent M (2006) Effect of anodic passivation on the corrosion behaviour of Fe–Mn–Al steels in 3.5% NaCl. In: Passivation of metals and semiconductors, and properties of thin oxide layers: a selection of papers from the 9th international symposium, Paris, France, 27 June–1 July 2005. Elsevier, Amsterdam Hamada A, Karjalainen L, El-Zeky M, Philippe M, Vincent M (2006) Effect of anodic passivation on the corrosion behaviour of Fe–Mn–Al steels in 3.5% NaCl. In: Passivation of metals and semiconductors, and properties of thin oxide layers: a selection of papers from the 9th international symposium, Paris, France, 27 June–1 July 2005. Elsevier, Amsterdam
341.
Zurück zum Zitat Chen P-C, Chao C-G, Liu T-F (2013) A novel high-strength, high-ductility and high-corrosion-resistance FeAlMnC low-density alloy. Scr Mater 68(6):380–383CrossRef Chen P-C, Chao C-G, Liu T-F (2013) A novel high-strength, high-ductility and high-corrosion-resistance FeAlMnC low-density alloy. Scr Mater 68(6):380–383CrossRef
342.
Zurück zum Zitat Lins VFC, Freitas MA, Silva EMP (2005) Corrosion resistance study of Fe–Mn–Al–C alloys using immersion and potentiostatic tests. Appl Surf Sci 250(1–4):124–134CrossRef Lins VFC, Freitas MA, Silva EMP (2005) Corrosion resistance study of Fe–Mn–Al–C alloys using immersion and potentiostatic tests. Appl Surf Sci 250(1–4):124–134CrossRef
343.
Zurück zum Zitat Yeganeh M, Eskandari M, Alavi-Zaree SR (2017) A comparison between corrosion behaviors of fine-grained and coarse-grained structures of high-Mn steel in NaCl solution. J Mater Eng Perform 26(6):2484–2490CrossRef Yeganeh M, Eskandari M, Alavi-Zaree SR (2017) A comparison between corrosion behaviors of fine-grained and coarse-grained structures of high-Mn steel in NaCl solution. J Mater Eng Perform 26(6):2484–2490CrossRef
344.
Zurück zum Zitat Kannan MB, Raman RKS, Khoddam S, Liyanaarachchi S (2013) Corrosion behavior of twinning-induced plasticity (TWIP) steel. Mater Corros-Werkstoffe Und Korrosion 64(3):231–235CrossRef Kannan MB, Raman RKS, Khoddam S, Liyanaarachchi S (2013) Corrosion behavior of twinning-induced plasticity (TWIP) steel. Mater Corros-Werkstoffe Und Korrosion 64(3):231–235CrossRef
345.
Zurück zum Zitat Jabłońska M, Michalik R (2014) Studies on the corrosion properties of high-Mn austenitic steels. Solid State Phenom 227:75–78CrossRef Jabłońska M, Michalik R (2014) Studies on the corrosion properties of high-Mn austenitic steels. Solid State Phenom 227:75–78CrossRef
346.
Zurück zum Zitat Tjong SC (1986) Stress corrosion cracking of the austenitic Fe–Al–Mn alloy in chloride environment. Mater Corros/Werkstoffe und Korrosion 37(8):444–447CrossRef Tjong SC (1986) Stress corrosion cracking of the austenitic Fe–Al–Mn alloy in chloride environment. Mater Corros/Werkstoffe und Korrosion 37(8):444–447CrossRef
348.
Zurück zum Zitat Tjong SC, Wu CS (1986) The microstructure and stress corrosion cracking behaviour of precipitation-hardened Fe–8.7Al–29.7Mn–1.04C alloy in 20% NaCl solution. Mater Sci Eng 80(2):203–211CrossRef Tjong SC, Wu CS (1986) The microstructure and stress corrosion cracking behaviour of precipitation-hardened Fe–8.7Al–29.7Mn–1.04C alloy in 20% NaCl solution. Mater Sci Eng 80(2):203–211CrossRef
349.
Zurück zum Zitat Shih ST, Tsu IF, Perng TP (1993) Environmentally assisted cracking of two-phase Fe–Mn–Al alloys in NaCl solution. Metall Trans A 24(2):459–465CrossRef Shih ST, Tsu IF, Perng TP (1993) Environmentally assisted cracking of two-phase Fe–Mn–Al alloys in NaCl solution. Metall Trans A 24(2):459–465CrossRef
350.
Zurück zum Zitat Koyama M, Akiyama E, Tsuzaki K (2013) Effects of static and dynamic strain aging on hydrogen embrittlement in TWIP steels containing Al. ISIJ Int 53(7):1268–1274CrossRef Koyama M, Akiyama E, Tsuzaki K (2013) Effects of static and dynamic strain aging on hydrogen embrittlement in TWIP steels containing Al. ISIJ Int 53(7):1268–1274CrossRef
351.
Zurück zum Zitat Koyama M, Springer H, Merzlikin SV, Tsuzaki K, Akiyama E, Raabe D (2014) Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe–Mn–Al–C light weight austenitic steel. Int J Hydrog Energy 39(9):4634–4646CrossRef Koyama M, Springer H, Merzlikin SV, Tsuzaki K, Akiyama E, Raabe D (2014) Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe–Mn–Al–C light weight austenitic steel. Int J Hydrog Energy 39(9):4634–4646CrossRef
352.
Zurück zum Zitat Koyama M, Akiyama E, Tsuzaki K (2012) Hydrogen embrittlement in a Fe–Mn–C ternary twinning-induced plasticity steel. Corros Sci 54:1–4CrossRef Koyama M, Akiyama E, Tsuzaki K (2012) Hydrogen embrittlement in a Fe–Mn–C ternary twinning-induced plasticity steel. Corros Sci 54:1–4CrossRef
353.
Zurück zum Zitat Koyama M, Akiyama E, Tsuzaki K, Raabe D (2013) Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging. Acta Mater 61(12):4607–4618CrossRef Koyama M, Akiyama E, Tsuzaki K, Raabe D (2013) Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging. Acta Mater 61(12):4607–4618CrossRef
354.
Zurück zum Zitat Koyama M, Akiyama E, Sawaguchi T, Raabe D, Tsuzaki K (2012) Hydrogen-induced cracking at grain and twin boundaries in an Fe–Mn–C austenitic steel. Scr Mater 66(7):459–462CrossRef Koyama M, Akiyama E, Sawaguchi T, Raabe D, Tsuzaki K (2012) Hydrogen-induced cracking at grain and twin boundaries in an Fe–Mn–C austenitic steel. Scr Mater 66(7):459–462CrossRef
355.
Zurück zum Zitat Koyama M, Bashir A, Rohwerder M, Merzlikin SV, Akiyama E, Tsuzaki K, Raabe D (2015) Spatially and kinetically resolved mapping of hydrogen in a twinning-induced plasticity steel by use of scanning Kelvin probe force microscopy. J Electrochem Soc 162(12):C638–C647CrossRef Koyama M, Bashir A, Rohwerder M, Merzlikin SV, Akiyama E, Tsuzaki K, Raabe D (2015) Spatially and kinetically resolved mapping of hydrogen in a twinning-induced plasticity steel by use of scanning Kelvin probe force microscopy. J Electrochem Soc 162(12):C638–C647CrossRef
356.
Zurück zum Zitat Ryu JH, Kim SK, Lee CS, Suh D-W, Bhadeshia HKDH (2012) Effect of aluminium on hydrogen-induced fracture behaviour in austenitic Fe–Mn–C steel. Proc R Soc A Math Phys Eng Sci 469(2149):20120458CrossRef Ryu JH, Kim SK, Lee CS, Suh D-W, Bhadeshia HKDH (2012) Effect of aluminium on hydrogen-induced fracture behaviour in austenitic Fe–Mn–C steel. Proc R Soc A Math Phys Eng Sci 469(2149):20120458CrossRef
357.
Zurück zum Zitat Park I-J, Lee S-M, Jeon H-H, Lee Y-K (2015) The advantage of grain refinement in the hydrogen embrittlement of Fe–18Mn–0.6C twinning-induced plasticity steel. Corros Sci 93(Supplement C):63–69CrossRef Park I-J, Lee S-M, Jeon H-H, Lee Y-K (2015) The advantage of grain refinement in the hydrogen embrittlement of Fe–18Mn–0.6C twinning-induced plasticity steel. Corros Sci 93(Supplement C):63–69CrossRef
358.
Zurück zum Zitat Park I-J, Jo SY, Kang M, Lee S-M, Lee Y-K (2014) The effect of Ti precipitates on hydrogen embrittlement of Fe–18Mn–0.6C–2Al–xTi twinning-induced plasticity steel. Corros Sci 89(Supplement C):38–45CrossRef Park I-J, Jo SY, Kang M, Lee S-M, Lee Y-K (2014) The effect of Ti precipitates on hydrogen embrittlement of Fe–18Mn–0.6C–2Al–xTi twinning-induced plasticity steel. Corros Sci 89(Supplement C):38–45CrossRef
359.
Zurück zum Zitat Liu Q, Zhou Q, Venezuela J, Zhang M, Wang J, Atrens A (2016) A review of the influence of hydrogen on the mechanical properties of DP, TRIP, and TWIP advanced high-strength steels for auto construction. Corros Rev 34:127–152CrossRef Liu Q, Zhou Q, Venezuela J, Zhang M, Wang J, Atrens A (2016) A review of the influence of hydrogen on the mechanical properties of DP, TRIP, and TWIP advanced high-strength steels for auto construction. Corros Rev 34:127–152CrossRef
360.
Zurück zum Zitat Han DK, Kim YM, Han HN, Bhadeshia HKDH, Suh D-W (2014) Hydrogen and aluminium in high-manganese twinning-induced plasticity steel. Scr Mater 80(Supplement C):9–12CrossRef Han DK, Kim YM, Han HN, Bhadeshia HKDH, Suh D-W (2014) Hydrogen and aluminium in high-manganese twinning-induced plasticity steel. Scr Mater 80(Supplement C):9–12CrossRef
361.
Zurück zum Zitat Haley D, Merzlikin SV, Choi P, Raabe D (2014) Atom probe tomography observation of hydrogen in high-Mn steel and silver charged via an electrolytic route. Int J Hydrog Energy 39(23):12221–12229CrossRef Haley D, Merzlikin SV, Choi P, Raabe D (2014) Atom probe tomography observation of hydrogen in high-Mn steel and silver charged via an electrolytic route. Int J Hydrog Energy 39(23):12221–12229CrossRef
362.
Zurück zum Zitat Song EJ, Bhadeshia HKDH, Suh D-W (2014) Interaction of aluminium with hydrogen in twinning-induced plasticity steel. Scr Mater 87(Supplement C):9–12CrossRef Song EJ, Bhadeshia HKDH, Suh D-W (2014) Interaction of aluminium with hydrogen in twinning-induced plasticity steel. Scr Mater 87(Supplement C):9–12CrossRef
363.
Zurück zum Zitat Han DK, Lee SK, Noh SJ, Kim SK, Suh DW (2015) Effect of aluminium on hydrogen permeation of high-manganese twinning-induced plasticity steel. Scr Mater 99(Supplement C):45–48CrossRef Han DK, Lee SK, Noh SJ, Kim SK, Suh DW (2015) Effect of aluminium on hydrogen permeation of high-manganese twinning-induced plasticity steel. Scr Mater 99(Supplement C):45–48CrossRef
364.
Zurück zum Zitat Tsu IF, Perng TP (2012) Hydrogen compatibility of Femnal alloys. Metall Trans A 22(1):215–224CrossRef Tsu IF, Perng TP (2012) Hydrogen compatibility of Femnal alloys. Metall Trans A 22(1):215–224CrossRef
365.
Zurück zum Zitat Tuğluca IB, Koyama M, Bal B, Canadinc D, Akiyama E, Tsuzaki K (2018) High-concentration carbon assists plasticity-driven hydrogen embrittlement in a Fe-high Mn steel with a relatively high stacking fault energy. Mater Sci Eng A 717:78–84CrossRef Tuğluca IB, Koyama M, Bal B, Canadinc D, Akiyama E, Tsuzaki K (2018) High-concentration carbon assists plasticity-driven hydrogen embrittlement in a Fe-high Mn steel with a relatively high stacking fault energy. Mater Sci Eng A 717:78–84CrossRef
366.
Zurück zum Zitat Chang SC, Liu JY, Juang HK (1995) Environment-assisted cracking of Fe–32% Mn–9% Al alloys in 3.5% sodium chloride solution. Corrosion 51(5):399–406CrossRef Chang SC, Liu JY, Juang HK (1995) Environment-assisted cracking of Fe–32% Mn–9% Al alloys in 3.5% sodium chloride solution. Corrosion 51(5):399–406CrossRef
367.
Zurück zum Zitat Boggs WE (1971) The oxidation of iron–aluminum alloys from 450° to 900°C. J Electrochem Soc 118(6):906–913CrossRef Boggs WE (1971) The oxidation of iron–aluminum alloys from 450° to 900°C. J Electrochem Soc 118(6):906–913CrossRef
368.
Zurück zum Zitat Sauer J, Rapp R, Hirth J (1982) Oxidation of iron–manganese–aluminum alloys at 850 and 1000°C. Oxid Met 18(5):285–294CrossRef Sauer J, Rapp R, Hirth J (1982) Oxidation of iron–manganese–aluminum alloys at 850 and 1000°C. Oxid Met 18(5):285–294CrossRef
369.
Zurück zum Zitat Erhart H, Wang R, Rapp RA (1984) In situ SEM study of the high-temperature oxidation of an Fe–Mn–Al–Si alloy. Oxid Met 21(1–2):81–88CrossRef Erhart H, Wang R, Rapp RA (1984) In situ SEM study of the high-temperature oxidation of an Fe–Mn–Al–Si alloy. Oxid Met 21(1–2):81–88CrossRef
370.
Zurück zum Zitat Jackson PRS, Wallwork GR (1984) High temperature oxidation of iron–manganese–aluminum based alloys. Oxid Met 21(3–4):135–170CrossRef Jackson PRS, Wallwork GR (1984) High temperature oxidation of iron–manganese–aluminum based alloys. Oxid Met 21(3–4):135–170CrossRef
371.
Zurück zum Zitat Benz JC, Leavenworth HW (2012) An assessment of Fe–Mn–Al alloys as substitutes for stainless steels. JOM 37(3):36–39CrossRef Benz JC, Leavenworth HW (2012) An assessment of Fe–Mn–Al alloys as substitutes for stainless steels. JOM 37(3):36–39CrossRef
373.
Zurück zum Zitat Tjong SC (1991) SEM, EDX and XRD studies of the scales formed on the Fe–Mn–Al–C system in oxidizing–sulphidizing environments. X-ray Spectrom 20(5):225–238CrossRef Tjong SC (1991) SEM, EDX and XRD studies of the scales formed on the Fe–Mn–Al–C system in oxidizing–sulphidizing environments. X-ray Spectrom 20(5):225–238CrossRef
374.
Zurück zum Zitat Dias A, de Freitas Cunha Lins V (1998) Scale morphologies and compositions of an iron–manganese–aluminum–silicon alloy oxidated at high temperatures. Corros Sci 40(2–3):271–280CrossRef Dias A, de Freitas Cunha Lins V (1998) Scale morphologies and compositions of an iron–manganese–aluminum–silicon alloy oxidated at high temperatures. Corros Sci 40(2–3):271–280CrossRef
375.
Zurück zum Zitat Perez P, Perez FJ, Gomez C, Adeva P (2002) Oxidation behaviour of an austenitic Fe–30Mn–5Al–0.5C alloy. Corros Sci 44(1):113–127CrossRef Perez P, Perez FJ, Gomez C, Adeva P (2002) Oxidation behaviour of an austenitic Fe–30Mn–5Al–0.5C alloy. Corros Sci 44(1):113–127CrossRef
376.
Zurück zum Zitat Agudelo AC, Marco JF, Gancedo JR, Pérez-Alcàzar GA (2002) Fe–Mn–Al–C alloys: a study of their corrosion behaviour in SO2 environments. In: Cook DC, Hoy GR (eds) Industrial applications of the Mössbauer effect: proceedings of ISIAME 2000 held in Virginia Beach, USA, 13–18 August 2000. Springer, Dordrecht, pp 141–152CrossRef Agudelo AC, Marco JF, Gancedo JR, Pérez-Alcàzar GA (2002) Fe–Mn–Al–C alloys: a study of their corrosion behaviour in SO2 environments. In: Cook DC, Hoy GR (eds) Industrial applications of the Mössbauer effect: proceedings of ISIAME 2000 held in Virginia Beach, USA, 13–18 August 2000. Springer, Dordrecht, pp 141–152CrossRef
378.
Zurück zum Zitat Cheng W-C, Jaw J-H, Wang C-J (2004) A study of aluminum nitride in a Fe–Mn–Al–C alloy. Scr Mater 51(4):279–283CrossRef Cheng W-C, Jaw J-H, Wang C-J (2004) A study of aluminum nitride in a Fe–Mn–Al–C alloy. Scr Mater 51(4):279–283CrossRef
379.
Zurück zum Zitat Cheng WC, Jaw JH, Wang CJ (2004) Growing ledge structures of AlN crystals in a Fe–Mn–Al–C alloy. Scr Mater 51(12):1141–1145CrossRef Cheng WC, Jaw JH, Wang CJ (2004) Growing ledge structures of AlN crystals in a Fe–Mn–Al–C alloy. Scr Mater 51(12):1141–1145CrossRef
380.
Zurück zum Zitat Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122(Supplement C):448–511CrossRef Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122(Supplement C):448–511CrossRef
381.
Zurück zum Zitat Raabe D, Tasan CC, Springer H, Bausch M (2015) From high-entropy alloys to high-entropy steels. Steel Res Int 86(10):1127–1138CrossRef Raabe D, Tasan CC, Springer H, Bausch M (2015) From high-entropy alloys to high-entropy steels. Steel Res Int 86(10):1127–1138CrossRef
382.
Zurück zum Zitat Koyama M, Zhang Z, Wang M, Ponge D, Raabe D, Tsuzaki K, Noguchi H, Tasan CC (2017) Bone-like crack resistance in hierarchical metastable nanolaminate steels. Science 355(6329):1055–1057CrossRef Koyama M, Zhang Z, Wang M, Ponge D, Raabe D, Tsuzaki K, Noguchi H, Tasan CC (2017) Bone-like crack resistance in hierarchical metastable nanolaminate steels. Science 355(6329):1055–1057CrossRef
383.
Zurück zum Zitat Hermawan H, Alamdari H, Mantovani D, Dubé D (2008) Iron–manganese: new class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metall 51(1):38–45CrossRef Hermawan H, Alamdari H, Mantovani D, Dubé D (2008) Iron–manganese: new class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metall 51(1):38–45CrossRef
384.
Zurück zum Zitat Li H, Wang Y, Peng Q (2017) High degradation rate of Fe–20Mn-based bio-alloys by accumulative cryo-rolling and annealing. Mater Sci Eng C 79:37–44CrossRef Li H, Wang Y, Peng Q (2017) High degradation rate of Fe–20Mn-based bio-alloys by accumulative cryo-rolling and annealing. Mater Sci Eng C 79:37–44CrossRef
385.
Zurück zum Zitat Mouzou E, Paternoster C, Tolouei R, Purnama A, Chevallier P, Dubé D, Prima F, Mantovani D (2016) In vitro degradation behavior of Fe–20Mn–1.2C alloy in three different pseudo-physiological solutions. Mater Sci Eng C 61:564–573CrossRef Mouzou E, Paternoster C, Tolouei R, Purnama A, Chevallier P, Dubé D, Prima F, Mantovani D (2016) In vitro degradation behavior of Fe–20Mn–1.2C alloy in three different pseudo-physiological solutions. Mater Sci Eng C 61:564–573CrossRef
386.
Zurück zum Zitat Wu C-Z, Chen S-C, Shih Y-H, Hung J-M, Lin C-C, Lin L-H, Ou K-L (2011) Development of the novel ferrous-based stainless steel for biomedical applications, part I: high-temperature microstructure, mechanical properties and damping behavior. J Mech Behav Biomed Mater 4(7):1548–1553CrossRef Wu C-Z, Chen S-C, Shih Y-H, Hung J-M, Lin C-C, Lin L-H, Ou K-L (2011) Development of the novel ferrous-based stainless steel for biomedical applications, part I: high-temperature microstructure, mechanical properties and damping behavior. J Mech Behav Biomed Mater 4(7):1548–1553CrossRef
387.
Zurück zum Zitat Wang C-H, Luo C-W, Huang C-F, Huang M-S, Ou K-L, Yu C-H (2011) Biocompatibility of metal carbides on Fe–Al–Mn-based alloys. J Alloys Compd 509(3):691–696CrossRef Wang C-H, Luo C-W, Huang C-F, Huang M-S, Ou K-L, Yu C-H (2011) Biocompatibility of metal carbides on Fe–Al–Mn-based alloys. J Alloys Compd 509(3):691–696CrossRef
388.
Zurück zum Zitat Chen S-L, Lin M-H, Chen C-C, Ou K-L (2008) Effect of electro-discharging on formation of biocompatible layer on implant surface. J Alloys Compd 456(1):413–418CrossRef Chen S-L, Lin M-H, Chen C-C, Ou K-L (2008) Effect of electro-discharging on formation of biocompatible layer on implant surface. J Alloys Compd 456(1):413–418CrossRef
389.
Zurück zum Zitat Schinhammer M, Hänzi AC, Löffler JF, Uggowitzer PJ (2010) Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater 6(5):1705–1713CrossRef Schinhammer M, Hänzi AC, Löffler JF, Uggowitzer PJ (2010) Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater 6(5):1705–1713CrossRef
390.
Zurück zum Zitat Kraus T, Moszner F, Fischerauer S, Fiedler M, Martinelli E, Eichler J, Witte F, Willbold E, Schinhammer M, Meischel M, Uggowitzer PJ, Löffler JF, Weinberg A (2014) Biodegradable Fe-based alloys for use in osteosynthesis: outcome of an in vivo study after 52 weeks. Acta Biomater 10(7):3346–3353CrossRef Kraus T, Moszner F, Fischerauer S, Fiedler M, Martinelli E, Eichler J, Witte F, Willbold E, Schinhammer M, Meischel M, Uggowitzer PJ, Löffler JF, Weinberg A (2014) Biodegradable Fe-based alloys for use in osteosynthesis: outcome of an in vivo study after 52 weeks. Acta Biomater 10(7):3346–3353CrossRef
391.
Zurück zum Zitat Hermawan H, Mantovani D (2013) Process of prototyping coronary stents from biodegradable Fe–Mn alloys. Acta Biomater 9(10):8585–8592CrossRef Hermawan H, Mantovani D (2013) Process of prototyping coronary stents from biodegradable Fe–Mn alloys. Acta Biomater 9(10):8585–8592CrossRef
392.
Zurück zum Zitat Mouzou E, Paternoster C, Tolouei R, Chevallier P, Biffi CA, Tuissi A, Mantovani D (2016) CO2-rich atmosphere strongly affects the degradation of Fe–21Mn–1C for biodegradable metallic implants. Mater Lett 181(Supplement C):362–366CrossRef Mouzou E, Paternoster C, Tolouei R, Chevallier P, Biffi CA, Tuissi A, Mantovani D (2016) CO2-rich atmosphere strongly affects the degradation of Fe–21Mn–1C for biodegradable metallic implants. Mater Lett 181(Supplement C):362–366CrossRef
393.
Zurück zum Zitat Hufenbach J, Wendrock H, Kochta F, Kühn U, Gebert A (2017) Novel biodegradable Fe–Mn–C–S alloy with superior mechanical and corrosion properties. Mater Lett 186(Supplement C):330–333CrossRef Hufenbach J, Wendrock H, Kochta F, Kühn U, Gebert A (2017) Novel biodegradable Fe–Mn–C–S alloy with superior mechanical and corrosion properties. Mater Lett 186(Supplement C):330–333CrossRef
394.
Zurück zum Zitat Hufenbach J, Kochta F, Wendrock H, Voß A, Giebeler L, Oswald S, Pilz S, Kühn U, Lode A, Gelinsky M, Gebert A (2018) S and B microalloying of biodegradable Fe–30Mn–1C—effects on microstructure, tensile properties, in vitro degradation and cytotoxicity. Mater Des 142:22–35CrossRef Hufenbach J, Kochta F, Wendrock H, Voß A, Giebeler L, Oswald S, Pilz S, Kühn U, Lode A, Gelinsky M, Gebert A (2018) S and B microalloying of biodegradable Fe–30Mn–1C—effects on microstructure, tensile properties, in vitro degradation and cytotoxicity. Mater Des 142:22–35CrossRef
395.
Zurück zum Zitat Gebert A, Kochta F, Voß A, Oswald S, Fernandez-Barcia M, Kühn U, Hufenbach J (2018) Corrosion studies on Fe–30Mn–1C alloy in chloride-containing solutions with view to biomedical application. Mater Corros 69(2):167–177CrossRef Gebert A, Kochta F, Voß A, Oswald S, Fernandez-Barcia M, Kühn U, Hufenbach J (2018) Corrosion studies on Fe–30Mn–1C alloy in chloride-containing solutions with view to biomedical application. Mater Corros 69(2):167–177CrossRef
396.
Zurück zum Zitat Wang P, Xu S, Liu J, Li X, Wei Y, Wang H, Gao H, Yang W (2017) Atomistic simulation for deforming complex alloys with application toward TWIP steel and associated physical insights. J Mech Phys Solids 98:290–308CrossRef Wang P, Xu S, Liu J, Li X, Wei Y, Wang H, Gao H, Yang W (2017) Atomistic simulation for deforming complex alloys with application toward TWIP steel and associated physical insights. J Mech Phys Solids 98:290–308CrossRef
397.
Zurück zum Zitat Han J, Kang S-H, Lee S-J, Kawasaki M, Lee H-J, Ponge D, Raabe D, Lee Y-K (2017) Superplasticity in a lean Fe–Mn–Al steel. Nat Commun 8(1):751CrossRef Han J, Kang S-H, Lee S-J, Kawasaki M, Lee H-J, Ponge D, Raabe D, Lee Y-K (2017) Superplasticity in a lean Fe–Mn–Al steel. Nat Commun 8(1):751CrossRef
398.
Zurück zum Zitat He BB, Huang MX (2016) On the mechanical stability of austenite matrix after martensite formation in a medium Mn steel. Metall Mater Trans A 47(7):3346–3353CrossRef He BB, Huang MX (2016) On the mechanical stability of austenite matrix after martensite formation in a medium Mn steel. Metall Mater Trans A 47(7):3346–3353CrossRef
399.
Zurück zum Zitat Seo EJ, Kim JK, Cho L, Mola J, Oh CY, De Cooman BC (2017) Micro-plasticity of medium Mn austenitic steel: perfect dislocation plasticity and deformation twinning. Acta Mater 135:112–123CrossRef Seo EJ, Kim JK, Cho L, Mola J, Oh CY, De Cooman BC (2017) Micro-plasticity of medium Mn austenitic steel: perfect dislocation plasticity and deformation twinning. Acta Mater 135:112–123CrossRef
400.
Zurück zum Zitat Misra RDK, Zhang Z, Jia Z, Surya PKCV, Somani MC, Karjalainen LP (2011) Nanomechanical insights into the deformation behavior of austenitic alloys with different stacking fault energies and austenitic stability. Mater Sci Eng A 528(22–23):6958–6963CrossRef Misra RDK, Zhang Z, Jia Z, Surya PKCV, Somani MC, Karjalainen LP (2011) Nanomechanical insights into the deformation behavior of austenitic alloys with different stacking fault energies and austenitic stability. Mater Sci Eng A 528(22–23):6958–6963CrossRef
401.
Zurück zum Zitat La Roca P, Baruj A, Sade M (2017) Shape-memory effect and pseudoelasticity in Fe–Mn-based alloys. Shape Mem Superelast 3(1):37–48CrossRef La Roca P, Baruj A, Sade M (2017) Shape-memory effect and pseudoelasticity in Fe–Mn-based alloys. Shape Mem Superelast 3(1):37–48CrossRef
402.
Zurück zum Zitat Niendorf T, Brenne F, Krooß P, Vollmer M, Günther J, Schwarze D, Biermann H (2016) Microstructural evolution and functional properties of Fe–Mn–Al–Ni shape memory alloy processed by selective laser melting. Metall Mater Trans A 47(6):2569–2573CrossRef Niendorf T, Brenne F, Krooß P, Vollmer M, Günther J, Schwarze D, Biermann H (2016) Microstructural evolution and functional properties of Fe–Mn–Al–Ni shape memory alloy processed by selective laser melting. Metall Mater Trans A 47(6):2569–2573CrossRef
403.
Zurück zum Zitat Omori T, Kainuma R (2017) Martensitic transformation and superelasticity in Fe–Mn–Al-based shape memory alloys. Shape Memory and Superelast 3(4):322–334CrossRef Omori T, Kainuma R (2017) Martensitic transformation and superelasticity in Fe–Mn–Al-based shape memory alloys. Shape Memory and Superelast 3(4):322–334CrossRef
404.
Zurück zum Zitat Vollmer M, Krooß P, Karaman I, Niendorf T (2017) On the effect of titanium on quenching sensitivity and pseudoelastic response in Fe–Mn–Al–Ni-base shape memory alloy. Scr Mater 126:20–23CrossRef Vollmer M, Krooß P, Karaman I, Niendorf T (2017) On the effect of titanium on quenching sensitivity and pseudoelastic response in Fe–Mn–Al–Ni-base shape memory alloy. Scr Mater 126:20–23CrossRef
405.
Zurück zum Zitat Ozcan H, Ma J, Karaman I, Chumlyakov YI, Santamarta R, Brown J, Noebe RD (2018) Microstructural design considerations in Fe–Mn–Al–Ni shape memory alloy wires: effects of natural aging. Scr Mater 142:153–157CrossRef Ozcan H, Ma J, Karaman I, Chumlyakov YI, Santamarta R, Brown J, Noebe RD (2018) Microstructural design considerations in Fe–Mn–Al–Ni shape memory alloy wires: effects of natural aging. Scr Mater 142:153–157CrossRef
Metadaten
Titel
A general perspective of Fe–Mn–Al–C steels
verfasst von
O. A. Zambrano
Publikationsdatum
20.06.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 20/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2551-6

Weitere Artikel der Ausgabe 20/2018

Journal of Materials Science 20/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.