Skip to main content

2016 | OriginalPaper | Buchkapitel

3. A Genome-Scale Metabolic Model of M. maripaludis S2 for CO2 Capture and Conversion to Methane

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Methane is a major energy source for heating and electricity. Its production by methanogenic bacteria is widely known in nature. M. maripaludis S2 is a fully sequenced hydrogenotrophic methanogen and an excellent laboratory strain with robust genetic tools. However, a quantitative systems biology model to complement these tools is absent in the literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Terzer M, ND Maynard, Covert MW, Jörg Stelling (2009) Genome-scale metabolic networks. Wiley Interdisc Rev: Syst Biol Med 3:285–297 Terzer M, ND Maynard, Covert MW, Jörg Stelling (2009) Genome-scale metabolic networks. Wiley Interdisc Rev: Syst Biol Med 3:285–297
2.
Zurück zum Zitat Senger RS, Papoutsakis ET (2008) Genome-scale model for Clostridium acetobutylicum: Part I. Metabolic network resolution and analysis. Biotechnol Bioeng 101:1036–1052CrossRef Senger RS, Papoutsakis ET (2008) Genome-scale model for Clostridium acetobutylicum: Part I. Metabolic network resolution and analysis. Biotechnol Bioeng 101:1036–1052CrossRef
3.
Zurück zum Zitat Zou W, Liu L, Zhang J, Yang H, Zhou M, Hua Q, Chen J (2012) Reconstruction and analysis of a genome-scale metabolic model of the vitamin C producing industrial strain Ketogulonicigenium vulgare WSH-001. J Biotechnol 161:42–48CrossRef Zou W, Liu L, Zhang J, Yang H, Zhou M, Hua Q, Chen J (2012) Reconstruction and analysis of a genome-scale metabolic model of the vitamin C producing industrial strain Ketogulonicigenium vulgare WSH-001. J Biotechnol 161:42–48CrossRef
4.
Zurück zum Zitat Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J, Conway de Macario E, Dodsworth JA, Gillett W, Graham DE, et al (2004) Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 186:6956–6969 Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J, Conway de Macario E, Dodsworth JA, Gillett W, Graham DE, et al (2004) Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 186:6956–6969
5.
Zurück zum Zitat Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114CrossRef Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114CrossRef
6.
Zurück zum Zitat Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M, Paley S, Rhee SY, Shearer AG, Tissier C et al (2008) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome Databases. Nucleic Acids Res 36:D623–D631CrossRef Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M, Paley S, Rhee SY, Shearer AG, Tissier C et al (2008) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome Databases. Nucleic Acids Res 36:D623–D631CrossRef
7.
Zurück zum Zitat Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M, Sohngen C, Stelzer M, Thiele J, Schomburg D (2011) BRENDA, the enzyme information system in 2011. Nucleic Acids Res 39:D670–D676CrossRef Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M, Sohngen C, Stelzer M, Thiele J, Schomburg D (2011) BRENDA, the enzyme information system in 2011. Nucleic Acids Res 39:D670–D676CrossRef
8.
Zurück zum Zitat Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRef Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRef
9.
Zurück zum Zitat Lee D-Y, Yun H, Park S, Lee SY (2003) MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis. Bioinformatics 19:2144–2146CrossRef Lee D-Y, Yun H, Park S, Lee SY (2003) MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis. Bioinformatics 19:2144–2146CrossRef
10.
Zurück zum Zitat Li C, Courtot M, Le Novère N, Laibe C (2010) BioModels.net Web Services, a free and integrated toolkit for computational modelling software. Briefings in bioinformatics 11:270–277CrossRef Li C, Courtot M, Le Novère N, Laibe C (2010) BioModels.net Web Services, a free and integrated toolkit for computational modelling software. Briefings in bioinformatics 11:270–277CrossRef
11.
Zurück zum Zitat Lee J, Yun H, Feist AM, Palsson BO, Lee SY (2008) Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl Microbiol Biotechnol 80:849–862CrossRef Lee J, Yun H, Feist AM, Palsson BO, Lee SY (2008) Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl Microbiol Biotechnol 80:849–862CrossRef
12.
Zurück zum Zitat Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA, Stahl DA (2007) Metabolic modeling of a mutualistic microbial community. Mol Syst Biol 3:92CrossRef Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA, Stahl DA (2007) Metabolic modeling of a mutualistic microbial community. Mol Syst Biol 3:92CrossRef
13.
Zurück zum Zitat Lombard J, Lopez-Garcia P, Moreira D (2012) Phylogenomic investigation of phospholipid synthesis in archaea. Archaea 2012:630910CrossRef Lombard J, Lopez-Garcia P, Moreira D (2012) Phylogenomic investigation of phospholipid synthesis in archaea. Archaea 2012:630910CrossRef
14.
Zurück zum Zitat Tenchov B, Vescio EM, Sprott GD, Zeidel ML, Mathai JC (2006) Salt tolerance of archaeal extremely halophilic lipid membranes. J Biol Chem 281:10016–10023CrossRef Tenchov B, Vescio EM, Sprott GD, Zeidel ML, Mathai JC (2006) Salt tolerance of archaeal extremely halophilic lipid membranes. J Biol Chem 281:10016–10023CrossRef
15.
Zurück zum Zitat Yu J-P, Ladapo J, Whitman WB (1993) Pathway of glycogen metabolism in Methanococcus maripaludis. J Bacteriol 176:325–332 Yu J-P, Ladapo J, Whitman WB (1993) Pathway of glycogen metabolism in Methanococcus maripaludis. J Bacteriol 176:325–332
16.
Zurück zum Zitat Verduyn C, Stouthamer AH, Scheffers WA, Dijken JP (1991) A theoretical evaluation of growth yields of yeasts. Antonie Van Leeuwenhoek 59:49–63CrossRef Verduyn C, Stouthamer AH, Scheffers WA, Dijken JP (1991) A theoretical evaluation of growth yields of yeasts. Antonie Van Leeuwenhoek 59:49–63CrossRef
17.
Zurück zum Zitat Jones WJ, Paynter MJB, Gupta R (1983) Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch Microbiol 135:91–97CrossRef Jones WJ, Paynter MJB, Gupta R (1983) Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch Microbiol 135:91–97CrossRef
18.
Zurück zum Zitat Xia Q, Wang T, Hendrickson EL, Lie TJ, Hackett M, Leigh JA (2009) Quantitative proteomics of nutrient limitation in the hydrogenotrophic methanogen Methanococcus maripaludis. BMC Microbiol 9:149CrossRef Xia Q, Wang T, Hendrickson EL, Lie TJ, Hackett M, Leigh JA (2009) Quantitative proteomics of nutrient limitation in the hydrogenotrophic methanogen Methanococcus maripaludis. BMC Microbiol 9:149CrossRef
19.
Zurück zum Zitat Reed JL, Famili I, Thiele I, Palsson BO (2006) Towards multidimensional genome annotation. Nat Rev Genet 7:130–141CrossRef Reed JL, Famili I, Thiele I, Palsson BO (2006) Towards multidimensional genome annotation. Nat Rev Genet 7:130–141CrossRef
20.
Zurück zum Zitat Sivashankari S, Shanmughavel P (2006) Functional annotation of hypothetical proteins–A review. Bioinformation 1:335CrossRef Sivashankari S, Shanmughavel P (2006) Functional annotation of hypothetical proteins–A review. Bioinformation 1:335CrossRef
21.
Zurück zum Zitat Kral TA, Brink KM, Miller SL, McKay CP (1998) Hydrogen consumption by methanogens on the early earth. Orig Life Evol Biosph 28:311–319CrossRef Kral TA, Brink KM, Miller SL, McKay CP (1998) Hydrogen consumption by methanogens on the early earth. Orig Life Evol Biosph 28:311–319CrossRef
22.
Zurück zum Zitat Lupa B, Hendrickson EL, Leigh JA, Whitman WB (2008) Formate-dependent H2 production by the mesophilic methanogen Methanococcus maripaludis. Appl Environ Microbiol 74:6584–6590CrossRef Lupa B, Hendrickson EL, Leigh JA, Whitman WB (2008) Formate-dependent H2 production by the mesophilic methanogen Methanococcus maripaludis. Appl Environ Microbiol 74:6584–6590CrossRef
23.
Zurück zum Zitat Whitman WB, Shieh J, Sohn S, Caras DS, Premachandran U (1986) Isolation and characterization of 22 mesophilic methanococci. Syst Appl Microbiol 7:235–240CrossRef Whitman WB, Shieh J, Sohn S, Caras DS, Premachandran U (1986) Isolation and characterization of 22 mesophilic methanococci. Syst Appl Microbiol 7:235–240CrossRef
24.
Zurück zum Zitat Haydock AK, Porat I, Whitman WB, Leigh JA (2004) Continuous culture of Methanococcus maripaludis under defined nutrient conditions. FEMS Microbiol Lett 238:85–91 Haydock AK, Porat I, Whitman WB, Leigh JA (2004) Continuous culture of Methanococcus maripaludis under defined nutrient conditions. FEMS Microbiol Lett 238:85–91
25.
Zurück zum Zitat Lin W, Whitman WB (2004) The importance of porE and porF in the anabolic pyruvate oxidoreductase of Methanococcus maripaludis. Arch Microbiol 181:68–73CrossRef Lin W, Whitman WB (2004) The importance of porE and porF in the anabolic pyruvate oxidoreductase of Methanococcus maripaludis. Arch Microbiol 181:68–73CrossRef
26.
Zurück zum Zitat Lie TJ, Leigh JA (2003) A novel repressor of nif and glnA expression in the methanogenic archaeon Methanococcus maripaludis. Mol Microbiol 47:235–246CrossRef Lie TJ, Leigh JA (2003) A novel repressor of nif and glnA expression in the methanogenic archaeon Methanococcus maripaludis. Mol Microbiol 47:235–246CrossRef
27.
Zurück zum Zitat Lie TJ, Leigh JA (2002) Regulatory response of Methanococcus maripaludis to Alanine, an intermediate Nitrogen Source. J Bacteriol 184:5301–5306CrossRef Lie TJ, Leigh JA (2002) Regulatory response of Methanococcus maripaludis to Alanine, an intermediate Nitrogen Source. J Bacteriol 184:5301–5306CrossRef
28.
Zurück zum Zitat Costa KC, Yoon SH, Pan M, Burn JA, Baliga NS, Leigh JA (2013) Effects of H2 and formate on growth yield and regulation of methanogenesis in Methanococcus maripaludis. J Bacteriol 195:1456–1462CrossRef Costa KC, Yoon SH, Pan M, Burn JA, Baliga NS, Leigh JA (2013) Effects of H2 and formate on growth yield and regulation of methanogenesis in Methanococcus maripaludis. J Bacteriol 195:1456–1462CrossRef
29.
Zurück zum Zitat Shieh J, Whitman WB (1987) Pathway of acetate assimilation in autotrophic and heterotrophic methanococci. J Bacteriol 169:5327–5329 Shieh J, Whitman WB (1987) Pathway of acetate assimilation in autotrophic and heterotrophic methanococci. J Bacteriol 169:5327–5329
30.
Zurück zum Zitat Feist AM, Scholten JCM, Palsson BØ, Brockman FJ, Ideker T (2006) Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol Syst Biol 2 Feist AM, Scholten JCM, Palsson BØ, Brockman FJ, Ideker T (2006) Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol Syst Biol 2
31.
Zurück zum Zitat Graupner M, White RH (2001) Methanococcus jannaschii Generates L-Proline by Cyclization of L-Ornithine. J Bacteriol 183:5203–5205CrossRef Graupner M, White RH (2001) Methanococcus jannaschii Generates L-Proline by Cyclization of L-Ornithine. J Bacteriol 183:5203–5205CrossRef
32.
Zurück zum Zitat Liu Y (2010) Adaptations of Methanococcus maripaludis to its unique lifestyle. The University of Georgia Liu Y (2010) Adaptations of Methanococcus maripaludis to its unique lifestyle. The University of Georgia
33.
Zurück zum Zitat Hausinger RP, Orme-Johnson WH, Walsh C (1985) Factor 390 chromophores: phosphodiester between AMP or GMP and methanogenic factor 420. Biochemistry 24:1629–1633CrossRef Hausinger RP, Orme-Johnson WH, Walsh C (1985) Factor 390 chromophores: phosphodiester between AMP or GMP and methanogenic factor 420. Biochemistry 24:1629–1633CrossRef
34.
Zurück zum Zitat Namboori SC, Graham DE (2008) Acetamido sugar biosynthesis in the Euryarchaea. J Bacteriol 190:2987–2996CrossRef Namboori SC, Graham DE (2008) Acetamido sugar biosynthesis in the Euryarchaea. J Bacteriol 190:2987–2996CrossRef
35.
Zurück zum Zitat White RH (2004) L-Aspartate semialdehyde and a 6-deoxy-5-ketohexose 1-phosphate are the precursors to the aromatic amino acids in Methanocaldococcus jannaschii. Biochemistry 43:7618–7627CrossRef White RH (2004) L-Aspartate semialdehyde and a 6-deoxy-5-ketohexose 1-phosphate are the precursors to the aromatic amino acids in Methanocaldococcus jannaschii. Biochemistry 43:7618–7627CrossRef
36.
Zurück zum Zitat Worrell V, Nagle D Jr (1988) Folic acid and pteroylpolyglutamate contents of archaebacteria. J Bacteriol 170:4420–4423 Worrell V, Nagle D Jr (1988) Folic acid and pteroylpolyglutamate contents of archaebacteria. J Bacteriol 170:4420–4423
37.
Zurück zum Zitat Ragsdale SW (2002) Biocatalytic One-Carbon Conversion. Encyclopedia Catal (Wiley Inc.) Ragsdale SW (2002) Biocatalytic One-Carbon Conversion. Encyclopedia Catal (Wiley Inc.)
38.
Zurück zum Zitat Strassman M, Ceci LN (1964) Enzymatic formation of homocitric acid, an intermediate in lysine biosynthesis. Biochem Biophys Res Commun 14:262CrossRef Strassman M, Ceci LN (1964) Enzymatic formation of homocitric acid, an intermediate in lysine biosynthesis. Biochem Biophys Res Commun 14:262CrossRef
39.
Zurück zum Zitat Ladapo J, Whitman WB (1990) Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis. Proc Natl Acad Sci 87:5598–5602CrossRef Ladapo J, Whitman WB (1990) Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis. Proc Natl Acad Sci 87:5598–5602CrossRef
40.
Zurück zum Zitat Belay N, Sparling R, Daniels L (1986) Relationship of formate to growth and methanogenesis by Methanococcus thermolithotrophicus. Appl Environ Microbiol 52:1080–1085 Belay N, Sparling R, Daniels L (1986) Relationship of formate to growth and methanogenesis by Methanococcus thermolithotrophicus. Appl Environ Microbiol 52:1080–1085
41.
Zurück zum Zitat Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958CrossRef Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958CrossRef
42.
Zurück zum Zitat Feist AM, Scholten JC, Palsson BØ, Brockman FJ, Ideker T (2006) Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol Syst Biol 2 Feist AM, Scholten JC, Palsson BØ, Brockman FJ, Ideker T (2006) Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol Syst Biol 2
43.
Zurück zum Zitat Mahadevan R, Bond D, Butler J, Esteve-Nunez A, Coppi M, Palsson B, Schilling C, Lovley D (2006) Characterization of metabolism in the Fe (III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl Environ Microbiol 72:1558–1568CrossRef Mahadevan R, Bond D, Butler J, Esteve-Nunez A, Coppi M, Palsson B, Schilling C, Lovley D (2006) Characterization of metabolism in the Fe (III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl Environ Microbiol 72:1558–1568CrossRef
44.
Zurück zum Zitat Porat I, Sieprawska-Lupa M, Teng Q, Bohanon FJ, White RH, Whitman WB (2006) Biochemical and genetic characterization of an early step in a novel pathway for the biosynthesis of aromatic amino acids and p-aminobenzoic acid in the archaeon Methanococcus maripaludis. Mol Microbiol 62:1117–1131CrossRef Porat I, Sieprawska-Lupa M, Teng Q, Bohanon FJ, White RH, Whitman WB (2006) Biochemical and genetic characterization of an early step in a novel pathway for the biosynthesis of aromatic amino acids and p-aminobenzoic acid in the archaeon Methanococcus maripaludis. Mol Microbiol 62:1117–1131CrossRef
45.
Zurück zum Zitat Lie TJ, Costa KC, Lupa B, Korpole S, Whitman WB, Leigh JA (2012) Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis. Proc Natl Acad Sci U S A 109:15473–15478CrossRef Lie TJ, Costa KC, Lupa B, Korpole S, Whitman WB, Leigh JA (2012) Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis. Proc Natl Acad Sci U S A 109:15473–15478CrossRef
46.
Zurück zum Zitat Major TA, Liu Y, Whitman WB (2010) Characterization of energy-conserving hydrogenase B in Methanococcus maripaludis. J Bacteriol 192:4022–4030CrossRef Major TA, Liu Y, Whitman WB (2010) Characterization of energy-conserving hydrogenase B in Methanococcus maripaludis. J Bacteriol 192:4022–4030CrossRef
47.
Zurück zum Zitat Wood GE, Haydock AK, Leigh JA (2003) Function and regulation of the formate dehydrogenase genes of the methanogenic archaeon methanococcus maripaludis. J Bacteriol 185:2548–2554CrossRef Wood GE, Haydock AK, Leigh JA (2003) Function and regulation of the formate dehydrogenase genes of the methanogenic archaeon methanococcus maripaludis. J Bacteriol 185:2548–2554CrossRef
48.
Zurück zum Zitat Costa KC, Lie TJ, Jacobs MA, Leigh JA (2013) H2-independent growth of the hydrogenotrophic methanogen Methanococcus maripaludis. MBio 4 Costa KC, Lie TJ, Jacobs MA, Leigh JA (2013) H2-independent growth of the hydrogenotrophic methanogen Methanococcus maripaludis. MBio 4
49.
Zurück zum Zitat Kessler PS, Daniel C, Leigh JA (2001) Ammonia switch-off of nitrogen fixation in the methanogenic archaeon Methanococcus maripaludis: mechanistic features and requirement for the novel GlnB homologues, Nif I(1) and NifI(2). J Bacteriol 183:882–889CrossRef Kessler PS, Daniel C, Leigh JA (2001) Ammonia switch-off of nitrogen fixation in the methanogenic archaeon Methanococcus maripaludis: mechanistic features and requirement for the novel GlnB homologues, Nif I(1) and NifI(2). J Bacteriol 183:882–889CrossRef
50.
Zurück zum Zitat Lie TJ, Leigh JA (2002) A novel repressor of nif and glnA expression in the methanogenic archaeon Methanococcus maripaludis. Mol Microbiol 47:235–246CrossRef Lie TJ, Leigh JA (2002) A novel repressor of nif and glnA expression in the methanogenic archaeon Methanococcus maripaludis. Mol Microbiol 47:235–246CrossRef
51.
Zurück zum Zitat Belay N, Sparling R, Choi B-S, Roberts M, Roberts J, Daniels L (1988) Physiological and 15N-NMR analysis of molecular nitrogen fixation by Methanococcus thermolithotrophicus, Methanobacterium bryantii and Methanospirillum hungatei. Biochimica et Biophysica Acta (BBA)-Bioenergetics 971:233–245 Belay N, Sparling R, Choi B-S, Roberts M, Roberts J, Daniels L (1988) Physiological and 15N-NMR analysis of molecular nitrogen fixation by Methanococcus thermolithotrophicus, Methanobacterium bryantii and Methanospirillum hungatei. Biochimica et Biophysica Acta (BBA)-Bioenergetics 971:233–245
52.
Zurück zum Zitat Fardeau M-L, Peillex J-P, Belaich J-P (1987) Energetics of the growth of Methanobacterium thermoautotrophicum and Methanococcus thermolithotrophicus on ammonium chloride and dinitrogen. Arch Microbiol 148:128–131CrossRef Fardeau M-L, Peillex J-P, Belaich J-P (1987) Energetics of the growth of Methanobacterium thermoautotrophicum and Methanococcus thermolithotrophicus on ammonium chloride and dinitrogen. Arch Microbiol 148:128–131CrossRef
53.
Zurück zum Zitat Satish Kumar V, Ferry JG, Maranas CD (2011) Metabolic reconstruction of the archaeon methanogen Methanosarcina acetivorans. BMC Syst Biol 5:28 Satish Kumar V, Ferry JG, Maranas CD (2011) Metabolic reconstruction of the archaeon methanogen Methanosarcina acetivorans. BMC Syst Biol 5:28
54.
Zurück zum Zitat Ulas T, Riemer SA, Zaparty M, Siebers B, Schomburg D (2012) Genome-scale reconstruction and analysis of the metabolic network in the hyperthermophilic archaeon Sulfolobus solfataricus. PLoS ONE 7:e43401CrossRef Ulas T, Riemer SA, Zaparty M, Siebers B, Schomburg D (2012) Genome-scale reconstruction and analysis of the metabolic network in the hyperthermophilic archaeon Sulfolobus solfataricus. PLoS ONE 7:e43401CrossRef
55.
Zurück zum Zitat Shima S, Pilak O, Vogt S, Schick M, Stagni MS, Meyer-Klaucke W, Warkentin E, Thauer RK, Ermler U (2008) The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 321:572–575CrossRef Shima S, Pilak O, Vogt S, Schick M, Stagni MS, Meyer-Klaucke W, Warkentin E, Thauer RK, Ermler U (2008) The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 321:572–575CrossRef
56.
Zurück zum Zitat Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318:1782–1786CrossRef Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318:1782–1786CrossRef
57.
Zurück zum Zitat Benedict MN, Gonnerman MC, Metcalf WW, Price ND (2012) Genome-scale metabolic reconstruction and hypothesis testing in the Methanogenic Archaeon Methanosarcina acetivorans C2A. J Bacteriol 194:855–865CrossRef Benedict MN, Gonnerman MC, Metcalf WW, Price ND (2012) Genome-scale metabolic reconstruction and hypothesis testing in the Methanogenic Archaeon Methanosarcina acetivorans C2A. J Bacteriol 194:855–865CrossRef
Metadaten
Titel
A Genome-Scale Metabolic Model of M. maripaludis S2 for CO2 Capture and Conversion to Methane
verfasst von
Nishu Goyal
Copyright-Jahr
2016
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-2510-5_3