Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2016

Open Access 01.12.2016 | Research

A geometrical interpretation of the inverse matrix

verfasst von: Yanping Zhou, Binwu He

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2016

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

Utilizing a new method to structure parallellotopes, a geometrical interpretation of the inverse matrix is given, which includes the generalized inverse of full column rank or a full row rank matrices. Further, some relational volume formulas of parallellotopes are established.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

1 Introduction and notations

Let \(\mathbb{R}^{n}\) denote an n-dimensional real Euclidean vector space, for a nonzero \(n\times1\) vector \(x\in{\mathbb{R}^{n}}\), the generalized inverse of x, denoted by \(x^{+}\), has the geometrical interpretation that \(x^{T}\) is divided by \(\|x\|^{2}\), that is, \(x^{+}=x^{T}/\|x\|^{2}\), where \(x^{T}\) is the transpose of x (see [1]). A natural question is whether a similar geometrical interpretation holds for the inverse of a matrix.
In this paper, using a new method to structure a m-dimensional parallellotope, the geometrical interpretation of the inverse matrix and the generalized inverse of a matrix with full column rank or full row rank are given.
Let \({[z_{1},z_{2},\ldots,z_{m}]}\) be the m-dimensional parallellotope with m linearly independent vectors \(z_{1},z_{2},\ldots,z_{m}\) as its edge vectors, i.e.,
$${[z_{1},z_{2},\ldots,z_{m}]}= \bigl\{ z\in \mathbb{R}^{n} \mid t_{1}z_{1}+ \cdots+t_{m}z_{m}, t_{i}\in [0,1],i=1,2,\ldots,m \bigr\} ; $$
\({[z_{1},\ldots,z_{i-1},z_{i+1},\ldots,z_{m}]}\) denotes the facets of the m-parallellotope \({[z_{1},z_{2},\ldots,z_{m}]}\) for an \((m-1)\)-hyperplane,
$$\mathcal{H}_{i}=\operatorname{span}\{z_{1}, \ldots,z_{i-1},z_{i+1},\ldots,z_{m}\}. $$
\(z_{i}\) is the altitude vector on facet \({[z_{1},\ldots,z_{i-1},z_{i+1},\ldots,z_{m}]}\) (see [2, 3]) with the orthogonal component of \(z_{i}\) with respect to \(\mathcal{H}_{i}\). If \({[z_{1},z_{2},\ldots,z_{m}]^{*}}\) denotes the m-parallellotope constructed by m linearly independent vectors \(z_{1},z_{2},\ldots,z_{m}\) as its altitude vectors, then we will show that there exist \(z^{*}_{1},z^{*}_{2},\ldots,z^{*}_{m}\), exclusive such that
$${[z_{1},z_{2},\ldots,z_{m}]}^{*}={ \bigl[z^{*}_{1},z^{*}_{2},\ldots,z^{*}_{m}\bigr]}. $$

2 Main results

Our main results are the following theorems.
Theorem 2.1
If M is a matrix with full row (column) rank and \(z_{1},z_{2},\ldots,z_{m}\) is its row (column) vectors, then the right (left) inverse of the matrix M is the matrix whose column (row) vectors are
$$\frac{z^{*}_{1}}{\|z_{1}\|^{2}}, \frac{z^{*}_{2}}{\|z_{2}\|^{2}}, \ldots, \frac {z^{*}_{m}}{\|z_{m}\|^{2}}, $$
where \(z^{*}_{1},z^{*}_{2},\ldots,z^{*}_{m}\) are m edge vectors of the m-parallellotope \([z_{1},z_{2},\ldots,z_{m}]^{*}\).
Corollary 2.2
If M is nonsingular \(n\times n\) matrix and \(z_{1},z_{2},\ldots,z_{n}\) is its row (column) vectors, then the inverse of the matrix M is the matrix whose column (row) vectors are
$$\frac{z^{*}_{1}}{\|z_{1}\|^{2}},\frac{z^{*}_{1}}{\|z_{1}\|^{2}},\ldots,\frac{z^{*}_{n}}{\| z_{n}\|^{2}}, $$
where \(z^{*}_{1},z^{*}_{2},\ldots,z^{*}_{n}\) are n edge vectors of the n-parallellotope \({[z_{1},z_{2},\ldots,z_{n}]^{*}}\).
We may say roughly if the \([z_{1},z_{2},\ldots,z_{m}]\) (\(z_{1},z_{2},\ldots,z_{m}\) as edge vectors) is the geometrical interpretation of the matrix M, then \([z_{1},z_{2},\ldots,z_{m}]^{*}\) (\(z_{1},z_{2},\ldots,z_{m}\) as altitude vectors) is one of the \(M^{-1}\).
We list some basic facts to state the following theorems.
We write \(L(i)\), for the linear subspace spanned by \(z_{1},z_{2},\ldots,z_{i}, z_{i}\in\mathbb{R}^{n}\) (\(1\leq i\leq n\)). Let \(\hat{\langle z,L\rangle}\) be the angle between vector z and linear subspace L, where if \(z\notin L\), then \(\hat{\langle z,L\rangle}\) is the angle between z and the orthogonal projection of z on L, denoted by \(z|_{L}\), i.e., \(z|_{L}=((L^{\bot}+x)\cap L)\). If \(z\in L\), then \(\hat{\langle z,L\rangle}=0\).
Theorem 2.3
Suppose \(y_{1},y_{2},\ldots,y_{n}\) are n row vectors of the matrix M, and \(z_{1},z_{2},\ldots,z_{n}\) are column vectors of the matrix \(M^{-1}\),
(1)
if \(\|y_{i}\|\rightarrow0\), then \(\|z_{i}\|\rightarrow+\infty\);
 
(2)
if \({\langle\hat{y_{i},L}(i-1)\rangle}\rightarrow0\), then there is k (\(1\leq k\leq n\)) such that \(\|z_{k}\|\rightarrow+\infty\).
 
Theorem 2.3 will be required in the study of matrix disturbances (see [46]).
Utilizing the geometrical interpretation of the inverse matrix, we have the following relational volume formulas of parallellotopes for the \(n\times n\) real matrices \(M,N\).
Theorem 2.4
Let \([z_{1},z_{2},\ldots,z_{n}]^{**}\) be the parallellotope structured by the edge vectors of \([z_{1},z_{2},\ldots,z_{n}]^{*}\) as altitude vectors. Then
$$\begin{aligned}& \operatorname{vol} \bigl([z_{1},z_{2},\ldots,z_{n}]^{*} \bigr)\cdot \operatorname{vol} \bigl([z_{1},z_{2}, \ldots,z_{n}] \bigr)= \Biggl(\prod^{n}_{i=1} \|z_{i}\| \Biggr)^{2}, \end{aligned}$$
(2.1)
$$\begin{aligned}& \operatorname{vol} \bigl([z_{1},z_{2},\ldots,z_{n}]^{**} \bigr)/ \operatorname{vol} \bigl({[z_{1},x_{2}, \ldots,z_{n}]} \bigr)= \Biggl(\prod^{n}_{i=1}{ \bigl\| z^{*}_{i}\bigr\| }/{\|z_{i}\| } \Biggr)^{2}, \end{aligned}$$
(2.2)
where \(\operatorname{vol}([z_{1},\ldots,z_{n}])\) denotes the volume of the parallellotope \([z_{1},\ldots,z_{n}]\).
The proofs of the theorems will be given in Section 3.

3 Proofs of the theorems

Given m linearly independent vectors \(z_{1},z_{2},\ldots,z_{m}\) in \({\mathbb{R}^{n}}\), if we structure an m-parallellotope \([z_{1},z_{2},\ldots,z_{m}]\) by them as edge vectors, then \([z_{1},z_{2},\ldots,z_{m}]\) has m linearly independent altitude vectors. Conversely, for any given m linearly independent vectors \(z_{1},z_{2},\ldots,z_{m}\), can we structure an m-parallellotope by them as m altitude vectors? The following lemma gives an affirmative answer.
Lemma 3.1
If \(\{z_{1},z_{2},\ldots,z_{m}\} \) (\(m\geq2\)) is a given set of linearly independent vectors in \(\mathbb{R}^{n}\), then there is an m-parallellotope \([z_{1},z_{2},\ldots,z_{m}]^{*}\) whose m altitude vectors are \(z_{1},z_{2},\ldots,z_{m}\).
Proof
If \(z_{1},z_{2},\ldots,z_{m}\) are linearly independent, then we have m linear functionals \(g_{1},g_{2},\ldots, g_{m}\) such that
$$g_{j}(z_{i})=\delta_{ij}\|z_{i} \|^{2}, \quad i,j=1,2,\ldots,m, $$
where \(\delta_{ij}\) is the Kronecker delta symbol.
From Riesz’s representation theorem for the linear functional, we get \(z^{*}_{1},z^{*}_{2},\ldots,z^{*}_{m}\) such that
$$ \bigl\langle z_{i},z^{*}_{j}\bigr\rangle = \delta_{ij}\|z_{i}\|^{2},\quad i,j=1,2,\ldots,m, $$
(3.1)
where \(\langle,\rangle\) is the ordinary inner product in \(\mathbb{R}^{n}\).
Further, let
$$\sum^{m}_{j=1}\alpha_{j}z^{*}_{j}=0, \quad\alpha_{j}\in\mathbb{R}, $$
by
$$0=\Biggl\langle z_{i},\sum^{m}_{j=1} \alpha_{j}z^{*}_{j}\Biggr\rangle =\alpha_{i} \|z_{i}\|^{2}, $$
we have \(\alpha_{i}=0,i=1,2,\ldots,m\). This shows that \(z^{*}_{1},z^{*}_{2},\ldots,z^{*}_{m}\) are linearly independent.
Now, we prove that \(z_{1},z_{2},\ldots,z_{m}\) are altitude vectors of the m-parallellotope \([z^{*}_{1},z^{*}_{2},\ldots, z^{*}_{m}]\) (the edge vectors of \([z^{*}_{1},z^{*}_{2},\ldots,z^{*}_{m}]\) are \(z^{*}_{1},z^{*}_{2},\ldots,z^{*}_{m}\)).
Suppose that \([z^{*}_{1},z^{*}_{2},\ldots,z^{*}_{i-1},z^{*}_{i+1},\ldots,z^{*}_{m}]\) are the facets of \({[z^{*}_{1},z^{*}_{2},\ldots,z^{*}_{m}]}\). From \(z_{i}\bot z^{*}_{j} \) (\(j\neq i\)), we have
$$ z_{i}\perp{\bigl[z^{*}_{1},z^{*}_{2}, \ldots,z^{*}_{i-1},z^{*}_{i+1},\ldots,z^{*}_{m}\bigr]}. $$
(3.2)
Thus, \(z_{1},z_{2},\ldots,z_{m}\) are altitude vectors of \({[z^{*}_{1},z^{*}_{2},\ldots,z^{*}_{m}]}\), i.e.,
$${[z_{1},z_{2},\ldots,z_{m}]^{*}}={ \bigl[z^{*}_{1},z^{*}_{2},\ldots,z^{*}_{m}\bigr]}. $$
This yields the desired m-parallellotope \({[z_{1},z_{2},\ldots,z_{m}]^{*}}\). □
Proof of Theorem 2.1
For a given \(m\times n\) matrix full row rank \(M=(c_{ij})_{m\times n}\), let
$$z_{i}=(c_{i1},c_{i2},\ldots,c_{in}), \quad i=1,2,\ldots,m. $$
By Lemma 3.1, we have an unique vector set \(\{z^{*}_{1},z^{*}_{2},\ldots,z^{*}_{m}\}\) such that
$$ \bigl\langle z_{i},z^{*}_{j}\bigr\rangle = \delta_{ij}\|z_{i}\|^{2}, \quad i=1,2,\ldots,m; j=1,2,\ldots,n, $$
i.e.,
$$ \biggl\langle z_{i},\frac{z^{*}_{j}}{\|z_{i}\|^{2}}\biggr\rangle = \delta_{ij},\quad i=1,2,\ldots,m; j=1,2,\ldots,n, $$
(3.3)
and \(z^{*}_{1},z^{*}_{2},\ldots,z^{*}_{m}\) are m edge vectors of the parallellotope \({[z_{1},z_{2},\ldots,z_{m}]^{*}}\).
Suppose
$$d_{i}=\frac{z^{*}_{i}}{\|z_{i}\|^{2}}, \quad i=1,2,\ldots,m, $$
and
$$N=(d_{1},d_{2},\ldots,d_{m}). $$
It follows from (3.3) that
$$MN= \begin{pmatrix} z_{1}\\ z_{2}\\ \vdots\\ z_{m} \end{pmatrix} (d_{1},d_{2}, \ldots,d_{m}) = \begin{pmatrix} 1 & & 0\\ &\ddots\\ 0& & 1 \end{pmatrix}. $$
Thus, the matrix N is the inverse of the matrix M, and the column vectors \(d_{1},d_{2},\ldots,d_{m}\) of the matrix N are the edge vectors of \({[z_{1},z_{2},\ldots,z_{m}]^{*}}\) divided by \(\|z_{1}\|^{2},\|z_{2}\|^{2},\ldots,\|z_{m}\|^{2}\), respectively.
Together with Theorem 2.1 and taking M for an \(n\times n\) matrix with full rank, we have Corollary 2.2.
Here, we will complete the proof of Theorem 2.3. The following lemma will be required. □
Lemma 3.2
For \(L(i)\) the linear subspace spanned by \(z_{1},z_{2},\ldots,z_{i}, i=1,2,\ldots,m\) (≤n), if \(\operatorname{vol}({[z_{1},z_{2},\ldots,z_{m}]})\) is the volume of the parallellotope \({[z_{1},z_{2},\ldots,z_{m}]}\) (see [7]), we have
$$ \operatorname{vol}\bigl({[z_{1},z_{2}, \ldots,z_{m}]}\bigr)=\prod^{m}_{i=1} \|z_{i}\|\cdot\prod^{m}_{i=2}\sin{ \bigl\langle \hat{z_{i},L}(i-1)\bigr\rangle }. $$
(3.4)
Proof
Assume that \(h_{i},p_{i}\) are the orthogonal component and orthogonal projection of \(z_{i}\) with respect to \(L(i-1)\), respectively \((i=2,\ldots ,m,h_{1}=z_{1},p_{1}=0)\). Since \(\|z_{i}\|\cos{\langle \hat{z_{i},p_{i}}\rangle}=\|p_{i}\|\), we have
$$ \cos{\bigl\langle \hat{z_{i},L}(i-1)\bigr\rangle }= \frac{\langle z_{i},p_{i}\rangle}{\|z_{i}\|\|p_{i}\|}=\frac{\langle p_{i},p_{i}\rangle}{\|z_{i}\|\|p_{i}\|}=\frac{p_{i}}{\|z_{i}\|}. $$
(3.5)
By \(\|z_{i}\|^{2}=\|p_{i}\|^{2}+\|h_{i}\|^{2}\), it follows that
$$\|h_{i}\|=\sqrt{\|z_{i}\|^{2}-\|p_{i} \|^{2}}=\|z_{i}\|\sin{\bigl\langle \hat{z_{i},L}(i-1) \bigr\rangle }. $$
From the definition of the volume of the parallellotope, we get (see [79])
$$ \operatorname{vol}\bigl({[z_{1},z_{2}, \ldots,z_{m}]}\bigr)= \prod^{m}_{i=1} \|h_{i}\|=\prod^{m}_{i=1} \|z_{i}\| \cdot\prod^{m}_{i=2} \sin{\bigl\langle \hat{z_{i},L}(i-1)\bigr\rangle }. $$
(3.6)
The proof of Lemma 3.2 is completed. □
Proof of Theorem 2.3
From Theorem 2.1, it follows that
$$ \begin{pmatrix} y_{1}\\ y_{2}\\ \vdots\\ y_{n} \end{pmatrix} (z_{1},z_{2}, \ldots,z_{n} ) = \begin{pmatrix} \langle y_{1},z_{1}\rangle && 0\\ &\ddots\\ 0 & &\langle y_{1},z_{1}\rangle \end{pmatrix} = \begin{pmatrix} 1 & & 0\\ &\ddots\\ 0 & & 1 \end{pmatrix}, $$
(3.7)
i.e.,
$$\langle y_{i},z_{i}\rangle=1, \quad i=1,2,\ldots,n. $$
It follows from the Cauchy inequality that
$$1=\bigl\vert \langle y_{i},z_{i}\rangle\bigr\vert \leq \|y_{i}\|\|z_{i}\|. $$
Thus the assertion (1) holds.
Let \(\{y_{1},y_{2},\ldots,y_{n}\}\) and \(\{z_{1},z_{2},\ldots,z_{n}\}\) in Lemma 3.2. From (3.7), we get
$$ \Biggl(\prod^{n}_{i=1} \|y_{i}\|\cdot\prod^{n}_{i=1}\sin{ \bigl\langle \hat{y_{i},L}(i-1)\bigr\rangle } \Biggr)\cdot \Biggl(\prod ^{n}_{j=1}\|z_{j}\|\cdot\prod ^{n}_{j=1}\sin{\bigl\langle \hat{z_{j},L}(j-1)\bigr\rangle } \Biggr)=1. $$
(3.8)
From
$$0\leq\Biggl\vert \prod^{n}_{j=1}\sin{ \bigl\langle \hat{y_{j},L}(j-1)\bigr\rangle }\Biggr\vert \leq1 $$
and
$$\prod^{n}_{i=1}\|y_{i}\|\leq G, $$
the assertion (2) is given. □
Proof of Theorem 2.4
Together with Theorem 2.1, we get
$$ \begin{pmatrix} \frac{z^{*}_{1}}{\|z_{1}\|^{2}}\\ \frac{z^{*}_{2}}{\|z_{2}\|^{2}}\\ \vdots\\ \frac{z^{*}_{n}}{\|z_{n}\|^{2}} \end{pmatrix} (z_{1},z_{2}, \ldots,z_{n}) = \begin{pmatrix} 1 && 0\\ &\ddots\\ 0 && 1 \end{pmatrix}. $$
(3.9)
Thus
$$\begin{aligned}& \det \begin{pmatrix} \begin{pmatrix} \frac{z^{*}_{1}}{\|z_{1}\|^{2}}\\ \frac{z^{*}_{2}}{\|z_{2}\|^{2}}\\ \vdots\\ \frac{z^{*}_{n}}{\|z_{n}\|^{2}} \end{pmatrix} (z_{1},z_{2}, \ldots,z_{n}) \end{pmatrix} =1, \\& \det \begin{pmatrix} z^{*}_{1}\\ z^{*}_{2}\\ \vdots\\ z^{*}_{n} \end{pmatrix} \cdot \det(z_{1},z_{2}, \ldots,z_{n})= \Biggl(\prod^{n}_{i=1} \|z_{i}\| \Biggr)^{2}. \end{aligned}$$
From
$${[x_{1},x_{2},\ldots,x_{n}]^{*}}={ \bigl[z^{*}_{1},z^{*}_{2},\ldots,z^{*}_{n}\bigr]}, $$
and the definition of the volume of parallellotopes, the equality (2.1) holds.
Assume that \(\{z^{**}_{1},z^{**}_{2},\ldots,z^{**}_{n}\}\) is a set of the edge vectors of \({[z_{1},z_{2},\ldots,z_{n}]^{**}}\). Together with Theorem 2.1, we get
$$ \begin{pmatrix} z^{*}_{1}\\ z^{*}_{2}\\ \vdots\\ z^{*}_{n} \end{pmatrix} \left(\textstyle\begin{array}{@{}c@{}} \frac{z^{**}_{1}}{\|z^{*}_{1}\|^{2}}, \frac{z^{**}_{2}}{\|z^{*}_{2}\|^{2}}, \vdots, \frac{z^{**}_{n}}{\|z^{*}_{n}\|^{2}} \end{array}\displaystyle \right) = \begin{pmatrix} 1 && 0\\ &\ddots\\ 0 && 1 \end{pmatrix}. $$
(3.10)
If follows from (3.10) that
$$\det \begin{pmatrix} z^{*}_{1}\\ z^{*}_{2}\\ \vdots\\ z^{*}_{n} \end{pmatrix} \cdot \det\bigl(z^{**}_{1},z^{**}_{2}, \ldots,z^{**}_{n}\bigr)= \Biggl(\prod ^{n}_{i=1}\|z_{i}\| \Biggr)^{2}. $$
Thus
$$ \operatorname{vol} \bigl({[z_{1},z_{2}, \ldots,z_{n}]^{*}} \bigr)\cdot \operatorname{vol} \bigl({[z_{1},z_{2},\ldots,z_{n}]^{**}} \bigr) = \Biggl(\prod^{n}_{i=1}\bigl\Vert z^{*}_{i}\bigr\Vert \Biggr)^{2}. $$
(3.11)
Taking together (2.1) and (3.11), the equality (2.2) holds. □
For \(\{z_{1},z_{2},\ldots,z_{n}\}\), from Lemma 3.1, \({[z_{1},z_{2},\ldots,z_{n}]^{*}}\) is structured by them as altitude vectors. Denote \({[z_{1},z_{2},\ldots,z_{n}]^{*}}\) by \(z^{*}_{1},z^{*}_{2},\ldots,z^{*}_{n}\).
Let
$${[z_{1},z_{2},\ldots,z_{n}]^{**}}={ \bigl[z^{*}_{1},z^{*}_{2},\ldots,z^{*}_{n} \bigr]^{*}}. $$
Thus Theorem 2.4 denotes the relationship of volumes about \({[z_{1},z_{2},\ldots,z_{n}]}\), \({[z_{1},z_{2},\ldots,z_{n}]^{*}}\), and \({[z_{1},z_{2},\ldots,z_{n}]^{**}}\).
Remark 1
By (3.10), we get
$$ \begin{pmatrix} \frac{z^{*}_{1}}{\|z_{1}\|^{2}}\\ \frac{z^{*}_{2}}{\|z_{2}\|^{2}}\\ \vdots\\ \frac{z^{*}_{n}}{\|z_{n}\|^{2}} \end{pmatrix} \left(\textstyle\begin{array}{@{}c@{}} \frac{\|z_{1}\|^{2}}{\|z^{*}_{1}\|^{2}}z^{**}_{1}, \frac{\|z_{2}\|^{2}}{\|z^{*}_{2}\|^{2}}z^{**}_{2}, \vdots, \frac{\|z_{n}\|^{2}}{\|z^{*}_{n}\|^{2}}z^{**}_{n} \end{array}\displaystyle \right) = \begin{pmatrix} 1 && 0\\ &\ddots\\ 0 && 1 \end{pmatrix}, $$
(3.12)
From (3.9) and (3.12), we see that
$$ z^{**}_{i}=\frac{\|z^{*}_{i}\|^{2}}{\|z_{i}\|^{2}}z_{i}, \quad i=1,2,\ldots,n. $$
(3.13)
By (3.13), we can see that \({[z_{1},z_{2},\ldots,z_{n}]^{**}}\) and \({[z_{1},z_{2},\ldots,z_{n}]}\) are two parallellotopes and their edge vectors are of the same direction.

Acknowledgements

The authors would like to acknowledge the support from the National Natural Science Foundation of China (11371239).
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Literatur
3.
Zurück zum Zitat Veljan, D: The sine theorem and inequalities for volume of simplices and determinants. Linear Algebra Appl. 219, 79-91 (1995) MathSciNetCrossRefMATH Veljan, D: The sine theorem and inequalities for volume of simplices and determinants. Linear Algebra Appl. 219, 79-91 (1995) MathSciNetCrossRefMATH
4.
Zurück zum Zitat Horn, RA, Johnson, CR: Matrix Analysis. Cambridge University Press, Cambridge (1988) Horn, RA, Johnson, CR: Matrix Analysis. Cambridge University Press, Cambridge (1988)
5.
Zurück zum Zitat Golub, GH, Van Loan, CF: Matrix Computations, 2nd edn. Johns Hopkings University Press, Baltimore (1989) MATH Golub, GH, Van Loan, CF: Matrix Computations, 2nd edn. Johns Hopkings University Press, Baltimore (1989) MATH
6.
Zurück zum Zitat Golub, GH, Van Loan, CF: Matrix Computations, 4th edn. Johns Hopkings University Press, Baltimore (2013) MATH Golub, GH, Van Loan, CF: Matrix Computations, 4th edn. Johns Hopkings University Press, Baltimore (2013) MATH
Metadaten
Titel
A geometrical interpretation of the inverse matrix
verfasst von
Yanping Zhou
Binwu He
Publikationsdatum
01.12.2016
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2016
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-016-1198-6

Weitere Artikel der Ausgabe 1/2016

Journal of Inequalities and Applications 1/2016 Zur Ausgabe