Skip to main content

2019 | OriginalPaper | Buchkapitel

10. A Glimpse at Pointwise Asymptotic Stability for Continuous-Time and Discrete-Time Dynamics

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Given a dynamical system, pointwise asymptotic stability, also called semistability, of a set requires that every point in the set be a Lyapunov stable equilibrium, and that every solution converge to one of the equilibria in the set. This note provides examples of pointwise asymptotic stability related to optimization and states select results from the literature, focusing on necessary and sufficient Lyapunov and Lyapunov-like conditions for and robustness of this stability property. Background on the classical asymptotic stability is included.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The set-valued terminology in this note follows [56]. In particular, a set-valued mapping \(F:{\mathbb R}^n\rightrightarrows {\mathbb R}^n\) associates to each \(x\in {\mathbb R}^n\), a subset \(F(x)\subset {\mathbb R}^n\).
 
2
\(F:{\mathbb R}^n\rightrightarrows {\mathbb R}^n\) is locally bounded if for every bounded set \(C\subset {\mathbb R}^n\), F(C) :=⋃xC F(x) is bounded.
 
3
\(F:{\mathbb R}^n\rightrightarrows {\mathbb R}^n\) is outer semicontinuous at \(x\in {\mathbb R}^n\) if for every x i → x and every convergent y i ∈ F(x i), limi y i ∈ F(x). F is outer semicontinuous if it is outer semicontinuous at every \(x\in {\mathbb R}^n\). If F is locally bounded and has closed (hence compact) values, outer semicontinuity at x is equivalent to a property of a set-valued F often called upper semicontinuity at x: for every ε > 0, there exists δ > 0 such that \(F(x+\delta {\mathbb B})\subset F(x)+\varepsilon {\mathbb B}\). Here, and in the remainder of this note, \({\mathbb B}\subset {\mathbb R}^n\) is a closed unit ball centered at 0; \(x+\delta {\mathbb B}\) is the closed ball of radius δ centered at x; and \(F(x)+\varepsilon {\mathbb B}\) is the Minkowski sum of F(x) and \(\varepsilon {\mathbb B}\), i.e., \(\{y+z\, |\, y\in F(x),\ z\in \varepsilon {\mathbb B}\}\).
 
4
\(\overline { \mathop {\mathrm {con}}} f(x+\delta {\mathbb B})\) is the closure of the convex hull of \(f(x+\delta {\mathbb B})\), i.e., of the smallest convex set containing \(f(x+\delta {\mathbb B})\).
 
5
A square matrix M is stable, or Hurwitz, if all of its eigenvalues have negative real parts. For such a matrix and a linear differential equation \(\dot {x}=Mx\), the origin is not just (Lyapunov) stable but also attractive, and hence asymptotically stable.
 
6
A set-valued mapping \(M:{\mathbb R}^n\rightrightarrows {\mathbb R}^n\) is monotone if for every \(x,x'\in {\mathbb R}^n\), every v ∈ M(x), v′∈ M(x′), one has (x − x′) ⋅ (v − v′) ≥ 0. It is maximal monotone if it is monotone and its graph, \(\{(x,v)\in {\mathbb R}^{2n}\, |\, v\in M(x)\}\), cannot be enlarged without violating monotonicity. In particular, a linear M given by M(x) = Lx is monotone if and only if L is positive semidefinite, and if such M is monotone then it is maximal monotone.
 
7
For a set-valued mapping \(M:{\mathbb R}^n\rightrightarrows {\mathbb R}^n\), its effective domain, denoted \({ \mathop {\mathrm {dom}} \nolimits } M\), is the set \(\{x\in {\mathbb R}^n\, |\, M(x)\neq \emptyset \}\).
 
8
A monotone \(M:{\mathbb R}^n\rightrightarrows {\mathbb R}^n\) is strictly monotone if for every \(x,x'\in {\mathbb R}^n\) with x ≠ x′, every v ∈ M(x), v′∈ M(x′), one has (x − x′) ⋅ (v − v′) > 0, and strongly monotone if there exists ρ > 0 such that, for every \(x,x'\in {\mathbb R}^n\), every v ∈ M(x), v′∈ M(x′), one has (x − x′) ⋅ (v − v′) ≥ ρx − x′2.
 
9
In systems theory, a system where ∥ϕ(t) − ψ(t)∥ is eventually decreasing to 0, for all solutions, often with appropriately understood uniform decrease rate over ∥ϕ(0) − ψ(0)∥ is called incrementally stable, see [3] and the references therein, and contractive if ∥ϕ(t) − ψ(t)∥ is decreasing, often at an exponential rate, see [2]. For applications of the contractive property, not related to monotonicity of the dynamics, see the survey [2] and the references therein.
 
10
A function \(f:{\mathbb R}^n\to {\mathbb R}\cup \{\infty \}\) is proper if it is not identically equal to and lsc if, for every \(x\in {\mathbb R}^n\) and every x i → x, liminfi f(x i) ≥ f(x). A useful condition, equivalent to f being proper, lsc, and convex is that the epigraph of f, namely the set \(\{(x,r)\in {\mathbb R}^n\, |\, r=f(x)\}\) be nonempty, closed, and convex.
 
11
The normal cone to a closed and convex set \(C\subset {\mathbb R}^n\) at x ∈ C is \(N_C(x)=\{v\in {\mathbb R}^n\, |\, v\cdot (x'-x)\leq 0\ \forall x'\in C\}\).
 
12
For a function \(f:{\mathbb R}^n\to {\mathbb R}\cup \{\infty \}\), \({ \mathop {\mathrm {dom}} \nolimits } f\) is the effective domain of f, i.e., the set \(\{x\in {\mathbb R}^n\, |\, f(x)\in {\mathbb R}\}\).
 
Literatur
1.
Zurück zum Zitat Aizicovici, S., Reich, S., Zaslavski, A.: Minimizing convex functions by continuous descent methods. Electron. J. Differential Equations (19) (2010) Aizicovici, S., Reich, S., Zaslavski, A.: Minimizing convex functions by continuous descent methods. Electron. J. Differential Equations (19) (2010)
2.
Zurück zum Zitat Aminzare, Z., Sontag, E.: Contraction methods for nonlinear systems: a brief introduction and some open problems. In: Proc. 53rd IEEE Conference on Decision and Control (2014) Aminzare, Z., Sontag, E.: Contraction methods for nonlinear systems: a brief introduction and some open problems. In: Proc. 53rd IEEE Conference on Decision and Control (2014)
3.
Zurück zum Zitat Angeli, D.: A Lyapunov approach to the incremental stability properties. IEEE Trans. Automat. Control 47(3), 410–421 (2002)CrossRefMathSciNetMATH Angeli, D.: A Lyapunov approach to the incremental stability properties. IEEE Trans. Automat. Control 47(3), 410–421 (2002)CrossRefMathSciNetMATH
5.
Zurück zum Zitat Attouch, H., Cabot, A., Czarnecki, M.O.: Asymptotic behavior of nonautonomous monotone and subgradient evolution equations. Trans. Amer. Math. Soc. 370(2), 755–790 (2018)CrossRefMathSciNetMATH Attouch, H., Cabot, A., Czarnecki, M.O.: Asymptotic behavior of nonautonomous monotone and subgradient evolution equations. Trans. Amer. Math. Soc. 370(2), 755–790 (2018)CrossRefMathSciNetMATH
6.
Zurück zum Zitat Attouch, H., Garrigos, G., Goudou, X.: A dynamic gradient approach to Pareto optimization with nonsmooth convex objective functions. J. Math. Anal. Appl. 422(1), 741–771 (2015)CrossRefMathSciNetMATH Attouch, H., Garrigos, G., Goudou, X.: A dynamic gradient approach to Pareto optimization with nonsmooth convex objective functions. J. Math. Anal. Appl. 422(1), 741–771 (2015)CrossRefMathSciNetMATH
7.
Zurück zum Zitat Aubin, J.P., Cellina, A.: Differential Inclusions. Springer-Verlag (1984) Aubin, J.P., Cellina, A.: Differential Inclusions. Springer-Verlag (1984)
8.
Zurück zum Zitat Bacciotti, A., Rosier, L.: Liapunov Functions and Stability in Control Theory, Lecture Notes in Control and Information Sciences, vol. 267. Springer Verlag (2001) Bacciotti, A., Rosier, L.: Liapunov Functions and Stability in Control Theory, Lecture Notes in Control and Information Sciences, vol. 267. Springer Verlag (2001)
9.
Zurück zum Zitat Baillon, J., Cominetti, R.: A convergence result for nonautonomous subgradient evolution equations and its application to the steepest descent exponential penalty trajectory in linear programming. J. Funct. Anal. 187(2), 263–273 (2001)CrossRefMathSciNetMATH Baillon, J., Cominetti, R.: A convergence result for nonautonomous subgradient evolution equations and its application to the steepest descent exponential penalty trajectory in linear programming. J. Funct. Anal. 187(2), 263–273 (2001)CrossRefMathSciNetMATH
10.
Zurück zum Zitat Barbašin, E., Krasovskiı̆, N.: On stability of motion in the large. Doklady Akad. Nauk SSSR (N.S.) 86, 453–456 (1952) Barbašin, E., Krasovskiı̆, N.: On stability of motion in the large. Doklady Akad. Nauk SSSR (N.S.) 86, 453–456 (1952)
11.
Zurück zum Zitat Bauschke, H., Borwein, J., Lewis, A.: The method of cyclic projections for closed convex sets in Hilbert space. In: Recent developments in optimization theory and nonlinear analysis (Jerusalem, 1995), Contemp. Math., vol. 204, pp. 1–38. Amer. Math. Soc., Providence, RI (1997) Bauschke, H., Borwein, J., Lewis, A.: The method of cyclic projections for closed convex sets in Hilbert space. In: Recent developments in optimization theory and nonlinear analysis (Jerusalem, 1995), Contemp. Math., vol. 204, pp. 1–38. Amer. Math. Soc., Providence, RI (1997)
12.
Zurück zum Zitat Bhat, S., Bernstein, D.: Nontangency-based Lyapunov tests for convergence and stability in systems having a continuum of equilibria. SIAM J. Control Optim. 42(5), 1745–1775 (2003)CrossRefMathSciNetMATH Bhat, S., Bernstein, D.: Nontangency-based Lyapunov tests for convergence and stability in systems having a continuum of equilibria. SIAM J. Control Optim. 42(5), 1745–1775 (2003)CrossRefMathSciNetMATH
13.
Zurück zum Zitat Bhat, S., Bernstein, D.: Arc-length-based Lyapunov tests for convergence and stability with applications to systems having a continuum of equilibria. Math. Control Signals Systems 22(2), 155–184 (2010)CrossRefMathSciNetMATH Bhat, S., Bernstein, D.: Arc-length-based Lyapunov tests for convergence and stability with applications to systems having a continuum of equilibria. Math. Control Signals Systems 22(2), 155–184 (2010)CrossRefMathSciNetMATH
14.
Zurück zum Zitat Brézis, H.: Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. In: Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), pp. 101–156. Academic Press, New York (1971) Brézis, H.: Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. In: Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), pp. 101–156. Academic Press, New York (1971)
15.
Zurück zum Zitat Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York (1973) Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York (1973)
16.
Zurück zum Zitat Brogliato, B., Daniilidis, A., Lemaréchal, C., Acary, V.: On the equivalence between complementarity systems, projected systems and differential inclusions. Systems Control Lett. 55(1), 45–51 (2006)CrossRefMathSciNetMATH Brogliato, B., Daniilidis, A., Lemaréchal, C., Acary, V.: On the equivalence between complementarity systems, projected systems and differential inclusions. Systems Control Lett. 55(1), 45–51 (2006)CrossRefMathSciNetMATH
17.
18.
Zurück zum Zitat Burachik, R., Iusem, A.: Set-valued mappings and enlargements of monotone operators, Springer Optimization and Its Applications, vol. 8. Springer, New York (2008) Burachik, R., Iusem, A.: Set-valued mappings and enlargements of monotone operators, Springer Optimization and Its Applications, vol. 8. Springer, New York (2008)
19.
20.
Zurück zum Zitat Chbani, Z., Riahi, H.: Existence and asymptotic behaviour for solutions of dynamical equilibrium systems. Evol. Equ. Control Theory 3(1), 1–14 (2014)CrossRefMathSciNetMATH Chbani, Z., Riahi, H.: Existence and asymptotic behaviour for solutions of dynamical equilibrium systems. Evol. Equ. Control Theory 3(1), 1–14 (2014)CrossRefMathSciNetMATH
21.
Zurück zum Zitat Chellaboina, V., Bhat, S., Haddad, W., Bernstein, D.: Modeling and analysis of mass-action kinetics: nonnegativity, realizability, reducibility, and semistability. IEEE Control Syst. Mag. 29(4), 60–78 (2009)CrossRefMathSciNetMATH Chellaboina, V., Bhat, S., Haddad, W., Bernstein, D.: Modeling and analysis of mass-action kinetics: nonnegativity, realizability, reducibility, and semistability. IEEE Control Syst. Mag. 29(4), 60–78 (2009)CrossRefMathSciNetMATH
22.
Zurück zum Zitat Choudhary, R.: Generic convergence of a convex Lyapounov function along trajectories of nonexpansive semigroups in Hilbert space. J. Nonlinear Convex Anal. 7(2), 245–268 (2006)MathSciNetMATH Choudhary, R.: Generic convergence of a convex Lyapounov function along trajectories of nonexpansive semigroups in Hilbert space. J. Nonlinear Convex Anal. 7(2), 245–268 (2006)MathSciNetMATH
23.
24.
Zurück zum Zitat Combettes, P.: Quasi-Fejérian analysis of some optimization algorithms. In: Inherently parallel algorithms in feasibility and optimization and their applications (Haifa, 2000), Stud. Comput. Math., vol. 8, pp. 115–152. North-Holland, Amsterdam (2001) Combettes, P.: Quasi-Fejérian analysis of some optimization algorithms. In: Inherently parallel algorithms in feasibility and optimization and their applications (Haifa, 2000), Stud. Comput. Math., vol. 8, pp. 115–152. North-Holland, Amsterdam (2001)
25.
Zurück zum Zitat Combettes., P.: Fejér monotonicity in convex optimization. In: Encyclopedia of Optimization, second edn., pp. 1016–1024. Springer, New York (2009) Combettes., P.: Fejér monotonicity in convex optimization. In: Encyclopedia of Optimization, second edn., pp. 1016–1024. Springer, New York (2009)
26.
Zurück zum Zitat Filippov, A.: Differential Equations with Discontinuous Righthand Sides. Kluwer (1988) Filippov, A.: Differential Equations with Discontinuous Righthand Sides. Kluwer (1988)
28.
Zurück zum Zitat Goebel, R.: Robustness of stability through necessary and sufficient Lyapunov-like conditions for systems with a continuum of equilibria. Systems Control Lett. 65, 81–88 (2014)CrossRefMathSciNetMATH Goebel, R.: Robustness of stability through necessary and sufficient Lyapunov-like conditions for systems with a continuum of equilibria. Systems Control Lett. 65, 81–88 (2014)CrossRefMathSciNetMATH
29.
Zurück zum Zitat Goebel, R.: Stability and robustness for saddle-point dynamics through monotone mappings. Systems Control Lett. 108, 16–22 (2017)CrossRefMathSciNetMATH Goebel, R.: Stability and robustness for saddle-point dynamics through monotone mappings. Systems Control Lett. 108, 16–22 (2017)CrossRefMathSciNetMATH
30.
Zurück zum Zitat Goebel, R., Sanfelice, R.: Applications of convex analysis to consensus algorithms, pointwise asymptotic stability, and its robustness. In: Proc. 57th IEEE Conference on Decision and Control (2018). Accepted Goebel, R., Sanfelice, R.: Applications of convex analysis to consensus algorithms, pointwise asymptotic stability, and its robustness. In: Proc. 57th IEEE Conference on Decision and Control (2018). Accepted
31.
Zurück zum Zitat Goebel, R., Sanfelice, R.: Pointwise Asymptotic Stability in a Hybrid System and Well-Posed Behavior Beyond Zeno. SIAM J. Control Optim. 56(2), 1358–1385 (2018)CrossRefMathSciNetMATH Goebel, R., Sanfelice, R.: Pointwise Asymptotic Stability in a Hybrid System and Well-Posed Behavior Beyond Zeno. SIAM J. Control Optim. 56(2), 1358–1385 (2018)CrossRefMathSciNetMATH
33.
Zurück zum Zitat Goebel, R., Sanfelice, R., Teel, A.: Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton University Press (2012) Goebel, R., Sanfelice, R., Teel, A.: Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton University Press (2012)
34.
Zurück zum Zitat Haddad, W., Chellaboina, V.: Stability and dissipativity theory for nonnegative dynamical systems: a unified analysis framework for biological and physiological systems. Nonlinear Anal. Real World Appl. 6(1), 35–65 (2005)CrossRefMathSciNetMATH Haddad, W., Chellaboina, V.: Stability and dissipativity theory for nonnegative dynamical systems: a unified analysis framework for biological and physiological systems. Nonlinear Anal. Real World Appl. 6(1), 35–65 (2005)CrossRefMathSciNetMATH
36.
Zurück zum Zitat Henry, C.: An existence theorem for a class of differential equations with multivalued right-hand side. J. Math. Anal. Appl. 41, 179–186 (1973)CrossRefMathSciNetMATH Henry, C.: An existence theorem for a class of differential equations with multivalued right-hand side. J. Math. Anal. Appl. 41, 179–186 (1973)CrossRefMathSciNetMATH
37.
Zurück zum Zitat Hermes, H.: Discontinuous vector fields and feedback control. In: Differential Equations and Dynamical Systems, pp. 155–165. Academic Press (1967) Hermes, H.: Discontinuous vector fields and feedback control. In: Differential Equations and Dynamical Systems, pp. 155–165. Academic Press (1967)
38.
Zurück zum Zitat Hui, Q., Haddad, W., Bhat, S.: Finite-time semistability and consensus for nonlinear dynamical networks. IEEE Trans. Automat. Control 53(8), 1887–1900 (2008)CrossRefMathSciNetMATH Hui, Q., Haddad, W., Bhat, S.: Finite-time semistability and consensus for nonlinear dynamical networks. IEEE Trans. Automat. Control 53(8), 1887–1900 (2008)CrossRefMathSciNetMATH
39.
Zurück zum Zitat Hui, Q., Haddad, W., Bhat, S.: Semistability, finite-time stability, differential inclusions, and discontinuous dynamical systems having a continuum of equilibria. IEEE Trans. Automat. Control 54(10), 2465–2470 (2009)CrossRefMathSciNetMATH Hui, Q., Haddad, W., Bhat, S.: Semistability, finite-time stability, differential inclusions, and discontinuous dynamical systems having a continuum of equilibria. IEEE Trans. Automat. Control 54(10), 2465–2470 (2009)CrossRefMathSciNetMATH
40.
Zurück zum Zitat Kellett, C.: Classical converse theorems in Lyapunov’s second method. Discrete Contin. Dyn. Syst. Ser. B 20(8), 2333–2360 (2015)CrossRefMathSciNetMATH Kellett, C.: Classical converse theorems in Lyapunov’s second method. Discrete Contin. Dyn. Syst. Ser. B 20(8), 2333–2360 (2015)CrossRefMathSciNetMATH
41.
Zurück zum Zitat Kellett, C., Teel, A.: Smooth Lyapunov functions and robustness of stability for difference inclusions. Systems & Control Letters 52, 395–405 (2004)CrossRefMathSciNetMATH Kellett, C., Teel, A.: Smooth Lyapunov functions and robustness of stability for difference inclusions. Systems & Control Letters 52, 395–405 (2004)CrossRefMathSciNetMATH
42.
Zurück zum Zitat Kellett, C., Teel, A.: On the robustness of \(\mathcal {K}\mathcal {L}\)-stability for difference inclusions: Smooth discrete-time Lyapunov functions. SIAM J. Control Optim. 44(3), 777–800 (2005) Kellett, C., Teel, A.: On the robustness of \(\mathcal {K}\mathcal {L}\)-stability for difference inclusions: Smooth discrete-time Lyapunov functions. SIAM J. Control Optim. 44(3), 777–800 (2005)
43.
Zurück zum Zitat Krasovskii, N., Subbotin, A.: Game-theoretical control problems. Springer-Verlag, New York (1988)CrossRef Krasovskii, N., Subbotin, A.: Game-theoretical control problems. Springer-Verlag, New York (1988)CrossRef
44.
Zurück zum Zitat LaSalle, J.P.: An invariance principle in the theory of stability. In: Differential equations and dynamical systems. New York: Academic Press (1967) LaSalle, J.P.: An invariance principle in the theory of stability. In: Differential equations and dynamical systems. New York: Academic Press (1967)
45.
Zurück zum Zitat Liberzon, D.: Switching in Systems and Control. Systems and Control: Foundations and Applications. Birkhauser (2003) Liberzon, D.: Switching in Systems and Control. Systems and Control: Foundations and Applications. Birkhauser (2003)
46.
Zurück zum Zitat Lyapunov, A.M.: The general problem of the stability of motion. Internat. J. Control 55(3), 521–790 (1992). Translated by A. T. Fuller from Édouard Davaux’s French translation (1907) of the 1892 Russian original. Lyapunov, A.M.: The general problem of the stability of motion. Internat. J. Control 55(3), 521–790 (1992). Translated by A. T. Fuller from Édouard Davaux’s French translation (1907) of the 1892 Russian original.
47.
Zurück zum Zitat Maschler, M., Peleg, B.: Stable sets and stable points of set-valued dynamic systems with applications to game theory. SIAM J. Control Optimization 14(6), 985–995 (1976)CrossRefMathSciNetMATH Maschler, M., Peleg, B.: Stable sets and stable points of set-valued dynamic systems with applications to game theory. SIAM J. Control Optimization 14(6), 985–995 (1976)CrossRefMathSciNetMATH
48.
49.
Zurück zum Zitat Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Automat. Control 50(2), 169–182 (2005)CrossRefMathSciNetMATH Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Automat. Control 50(2), 169–182 (2005)CrossRefMathSciNetMATH
50.
Zurück zum Zitat Nedić, A., Ozdaglar, A., Parrilo, P.: Constrained consensus and optimization in multi-agent networks. IEEE Trans. Automat. Control 55(4), 922–938 (2010)CrossRefMathSciNetMATH Nedić, A., Ozdaglar, A., Parrilo, P.: Constrained consensus and optimization in multi-agent networks. IEEE Trans. Automat. Control 55(4), 922–938 (2010)CrossRefMathSciNetMATH
51.
52.
53.
Zurück zum Zitat Olfati-Saber, R., Fax, J., Murray, R.: Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE 95(1), 215–233 (2007)CrossRefMATH Olfati-Saber, R., Fax, J., Murray, R.: Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE 95(1), 215–233 (2007)CrossRefMATH
54.
Zurück zum Zitat Peypouquet, J., Sorin, S.: Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time. J. Convex Anal. 17(3–4), 1113–1163 (2010)MathSciNetMATH Peypouquet, J., Sorin, S.: Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time. J. Convex Anal. 17(3–4), 1113–1163 (2010)MathSciNetMATH
55.
Zurück zum Zitat Rockafellar, R.: Convex Analysis. Princeton University Press (1970) Rockafellar, R.: Convex Analysis. Princeton University Press (1970)
56.
Zurück zum Zitat Rockafellar, R., Wets, R.J.B.: Variational Analysis. Springer (1998) Rockafellar, R., Wets, R.J.B.: Variational Analysis. Springer (1998)
57.
Zurück zum Zitat Sabach, S.: Products of finitely many resolvents of maximal monotone mappings in reflexive Banach spaces. SIAM J. Optim. 21(4), 1289–1308 (2011)CrossRefMathSciNetMATH Sabach, S.: Products of finitely many resolvents of maximal monotone mappings in reflexive Banach spaces. SIAM J. Optim. 21(4), 1289–1308 (2011)CrossRefMathSciNetMATH
58.
Zurück zum Zitat Sanfelice, R., Goebel, R., Teel, A.: Generalized solutions to hybrid dynamical systems. ESAIM Control Optim. Calc. Var. 14, 699–724 (2008)CrossRefMathSciNetMATH Sanfelice, R., Goebel, R., Teel, A.: Generalized solutions to hybrid dynamical systems. ESAIM Control Optim. Calc. Var. 14, 699–724 (2008)CrossRefMathSciNetMATH
59.
Zurück zum Zitat Shi, G., Proutiere, A., Johansson, K.: Network synchronization with convexity. SIAM J. Control Optim. 53(6), 3562–3583 (2015)CrossRefMathSciNetMATH Shi, G., Proutiere, A., Johansson, K.: Network synchronization with convexity. SIAM J. Control Optim. 53(6), 3562–3583 (2015)CrossRefMathSciNetMATH
60.
Zurück zum Zitat Smirnov, G.: Introduction to the theory of differential inclusions, Graduate Studies in Mathematics, vol. 41. American Mathematical Society, Providence, RI (2002) Smirnov, G.: Introduction to the theory of differential inclusions, Graduate Studies in Mathematics, vol. 41. American Mathematical Society, Providence, RI (2002)
61.
Zurück zum Zitat Teel, A., Praly, L.: A smooth Lyapunov function from a class-\({\mathcal {K}\mathcal {L}}\) estimate involving two positive semidefinite functions. ESAIM Control Optim. Calc. Var. 5, 313–367 (2000) Teel, A., Praly, L.: A smooth Lyapunov function from a class-\({\mathcal {K}\mathcal {L}}\) estimate involving two positive semidefinite functions. ESAIM Control Optim. Calc. Var. 5, 313–367 (2000)
62.
Zurück zum Zitat Venets, V.: A continuous algorithm for finding the saddle points of convex-concave functions. Avtomat. i Telemekh. (1), 42–47 (1984)MathSciNetMATH Venets, V.: A continuous algorithm for finding the saddle points of convex-concave functions. Avtomat. i Telemekh. (1), 42–47 (1984)MathSciNetMATH
63.
Zurück zum Zitat Venets, V.: Continuous algorithms for solution of convex optimization problems and finding saddle points of convex-concave functions with the use of projection operations. Optimization 16(4), 519–533 (1985).CrossRefMathSciNetMATH Venets, V.: Continuous algorithms for solution of convex optimization problems and finding saddle points of convex-concave functions with the use of projection operations. Optimization 16(4), 519–533 (1985).CrossRefMathSciNetMATH
64.
Zurück zum Zitat Zangwill, W.: Nonlinear programming: a unified approach. Prentice-Hall, Inc., Englewood Cliffs, N.J. (1969)MATH Zangwill, W.: Nonlinear programming: a unified approach. Prentice-Hall, Inc., Englewood Cliffs, N.J. (1969)MATH
65.
Zurück zum Zitat Zaslavski, A.: Convergence of a proximal point method in the presence of computational errors in Hilbert spaces. SIAM J. Optim. 20(5), 2413–2421 (2010).CrossRefMathSciNetMATH Zaslavski, A.: Convergence of a proximal point method in the presence of computational errors in Hilbert spaces. SIAM J. Optim. 20(5), 2413–2421 (2010).CrossRefMathSciNetMATH
Metadaten
Titel
A Glimpse at Pointwise Asymptotic Stability for Continuous-Time and Discrete-Time Dynamics
verfasst von
Rafal Goebel
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-25939-6_10