Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

04.02.2017 | Ausgabe 2/2017

Journal of Scientific Computing 2/2017

A Globally Convergent Algorithm for Nonconvex Optimization Based on Block Coordinate Update

Zeitschrift:
Journal of Scientific Computing > Ausgabe 2/2017
Autoren:
Yangyang Xu, Wotao Yin
Wichtige Hinweise
This work is supported in part by NSF DMS-1317602, EECS-1462397, and ONR N000141712162.

Abstract

Nonconvex optimization arises in many areas of computational science and engineering. However, most nonconvex optimization algorithms are only known to have local convergence or subsequence convergence properties. In this paper, we propose an algorithm for nonconvex optimization and establish its global convergence (of the whole sequence) to a critical point. In addition, we give its asymptotic convergence rate and numerically demonstrate its efficiency. In our algorithm, the variables of the underlying problem are either treated as one block or multiple disjoint blocks. It is assumed that each non-differentiable component of the objective function, or each constraint, applies only to one block of variables. The differentiable components of the objective function, however, can involve multiple blocks of variables together. Our algorithm updates one block of variables at a time by minimizing a certain prox-linear surrogate, along with an extrapolation to accelerate its convergence. The order of update can be either deterministically cyclic or randomly shuffled for each cycle. In fact, our convergence analysis only needs that each block be updated at least once in every fixed number of iterations. We show its global convergence (of the whole sequence) to a critical point under fairly loose conditions including, in particular, the Kurdyka–Łojasiewicz condition, which is satisfied by a broad class of nonconvex/nonsmooth applications. These results, of course, remain valid when the underlying problem is convex. We apply our convergence results to the coordinate descent iteration for non-convex regularized linear regression, as well as a modified rank-one residue iteration for nonnegative matrix factorization. We show that both applications have global convergence. Numerically, we tested our algorithm on nonnegative matrix and tensor factorization problems, where random shuffling clearly improves the chance to avoid low-quality local solutions.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2017

Journal of Scientific Computing 2/2017 Zur Ausgabe

Premium Partner

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Best Practices für die Mitarbeiter-Partizipation in der Produktentwicklung

Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier  - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis.
Jetzt gratis downloaden!

Bildnachweise