Skip to main content
Erschienen in: Journal of Computational Electronics 1/2017

11.11.2016

A GMR device based on a magnetic nanostructure with a \(\updelta \)-doping

verfasst von: Xu-Hui Liu, Zheng-Hua Tang, Yong-Hong Kong, Xi Fu, Yan-Jun Gong

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study how to manipulate by the \(\updelta \)-doping a giant magnetoresistance (GMR) device, which can be realized experimentally by depositing two parallel ferromagnetic stripes on top and bottom of the semiconductor \(\hbox {GaAs/Al}_{x}\hbox {Ga}_{1-x}\mathrm{As}\) heterostructure. We demonstrate an obvious GMR effect in the device with a \(\updelta \)-doping. We also reveal that the magnetoresistance ratio depends not only on the weight but also on the position of the \(\updelta \)-doping. These interesting results will be helpful for designing controllable GMR devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Levy, P.M.: Giant magnetoresistance in magnetic layered and granular materials. Solid State Phys. 47, 367–462 (1994) Levy, P.M.: Giant magnetoresistance in magnetic layered and granular materials. Solid State Phys. 47, 367–462 (1994)
2.
3.
Zurück zum Zitat Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Spintronics: a spin-based electronics version for the future. Science 294, 1488–1495 (2001)CrossRef Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Spintronics: a spin-based electronics version for the future. Science 294, 1488–1495 (2001)CrossRef
4.
Zurück zum Zitat Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988)CrossRef Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988)CrossRef
5.
Zurück zum Zitat Papp, G., Peeters, F.M.: Magneto conductance for tunneling through double magnetic barriers. Physica E 26, 339–346 (2005)CrossRef Papp, G., Peeters, F.M.: Magneto conductance for tunneling through double magnetic barriers. Physica E 26, 339–346 (2005)CrossRef
6.
Zurück zum Zitat Matulis, A., Peeters, F.M., Vasilopoulos, P.: Wave-vector-dependent tunneling through magnetic barriers. Phys. Rev. Lett. 72, 1518–1521 (1994)CrossRef Matulis, A., Peeters, F.M., Vasilopoulos, P.: Wave-vector-dependent tunneling through magnetic barriers. Phys. Rev. Lett. 72, 1518–1521 (1994)CrossRef
7.
Zurück zum Zitat Nogaret, A., Carlton, S., Gallagher, B.L., Main, P.C., Henini, M., Wirtz, R., Newbury, R., Howson, M.A., Beaumont, S.P.: Observation of giant magnetoresistance due to open orbits in hybrid semiconductor/ferromagnet devices. Phys. Rev. B 55, R16037–R16040 (1997)CrossRef Nogaret, A., Carlton, S., Gallagher, B.L., Main, P.C., Henini, M., Wirtz, R., Newbury, R., Howson, M.A., Beaumont, S.P.: Observation of giant magnetoresistance due to open orbits in hybrid semiconductor/ferromagnet devices. Phys. Rev. B 55, R16037–R16040 (1997)CrossRef
8.
Zurück zum Zitat Zhai, F., Guo, Y., Gu, B.L.: Giant magnetoresistance effect in a magnetic-electric barrier structure. Phys. Rev. B 66(12), 125305 (2002)CrossRef Zhai, F., Guo, Y., Gu, B.L.: Giant magnetoresistance effect in a magnetic-electric barrier structure. Phys. Rev. B 66(12), 125305 (2002)CrossRef
9.
Zurück zum Zitat Kubrak, V., Rahman, F., Gallagher, B.L., Main, P.C., Henini, M., Marrows, C.H., Howson, M.A.: Magnetoresistance of a two-dimensional electron gas due to a single magnetic barrier and its use for nanomagnetometry. Appl. Phys. Lett. 74, 2507–2509 (1999)CrossRef Kubrak, V., Rahman, F., Gallagher, B.L., Main, P.C., Henini, M., Marrows, C.H., Howson, M.A.: Magnetoresistance of a two-dimensional electron gas due to a single magnetic barrier and its use for nanomagnetometry. Appl. Phys. Lett. 74, 2507–2509 (1999)CrossRef
10.
Zurück zum Zitat Lu, M.W., Zhang, L.D.: Large magnetoresistance tunneling through a magnetically modulated nanostructure. J. Phys. Condens. Mater. 15, 1267–1275 (2003)CrossRef Lu, M.W., Zhang, L.D.: Large magnetoresistance tunneling through a magnetically modulated nanostructure. J. Phys. Condens. Mater. 15, 1267–1275 (2003)CrossRef
11.
Zurück zum Zitat Lu, M.W., Zhang, G.L., Chen, S.Y.: A GMR device based on hybrid ferromagnetic-Schottky-metal and semiconductor nanostructure. Semicond. Sci. Technol. 23, 035022-1–035022-5 (2008) Lu, M.W., Zhang, G.L., Chen, S.Y.: A GMR device based on hybrid ferromagnetic-Schottky-metal and semiconductor nanostructure. Semicond. Sci. Technol. 23, 035022-1–035022-5 (2008)
12.
Zurück zum Zitat Papp, G., Peeters, F.M.: Giant magnetoresistance in a two-dimensional electron gas modulated by magnetic barriers. J. Phys. Condens. Mater. 16, 8275–8283 (2004)CrossRef Papp, G., Peeters, F.M.: Giant magnetoresistance in a two-dimensional electron gas modulated by magnetic barriers. J. Phys. Condens. Mater. 16, 8275–8283 (2004)CrossRef
13.
Zurück zum Zitat Papp, G., Borza, S.: Giant magnetoresistance in a two-dimensional electron gas modulated by periodically repeated magnetic barriers. Solid State Commun. 150, 2023–2027 (2010)CrossRef Papp, G., Borza, S.: Giant magnetoresistance in a two-dimensional electron gas modulated by periodically repeated magnetic barriers. Solid State Commun. 150, 2023–2027 (2010)CrossRef
14.
Zurück zum Zitat Papp, G., Peeters, F.M.: Tunable giant magnetoresistance with magnetic barriers. J. Appl. Phys. 100, 043707-1–043707-4 (2006)CrossRef Papp, G., Peeters, F.M.: Tunable giant magnetoresistance with magnetic barriers. J. Appl. Phys. 100, 043707-1–043707-4 (2006)CrossRef
15.
Zurück zum Zitat Yang, X.D., Wang, R.Z., Guo, Y., Yang, W., Yu, D.B., Wang, B., Yan, H.: Giant magnetoresistance effect of two-dimensional electron gas systems in a periodically modulated magnetic field. Phys. Rev. B 70, 115303-1–115303-5 (2004) Yang, X.D., Wang, R.Z., Guo, Y., Yang, W., Yu, D.B., Wang, B., Yan, H.: Giant magnetoresistance effect of two-dimensional electron gas systems in a periodically modulated magnetic field. Phys. Rev. B 70, 115303-1–115303-5 (2004)
16.
Zurück zum Zitat Yang, X.D., Wang, R.Z., Yan, H.: Linear magnetoresistance effect in lateral magnetic superlattices. Solid State Commun. 151, 1156–1158 (2011)CrossRef Yang, X.D., Wang, R.Z., Yan, H.: Linear magnetoresistance effect in lateral magnetic superlattices. Solid State Commun. 151, 1156–1158 (2011)CrossRef
17.
Zurück zum Zitat Wang, Y., Chen, N.F., Jiang, Y., Zhang, X.W.: Ballistic electron transport in hybrid ferromagnet/two-dimensional electron gas sandwich nanostructure: Spin polarization and magnetoresistance effect. J. Appl. Phys. 105, 013708-1–013708-5 (2009) Wang, Y., Chen, N.F., Jiang, Y., Zhang, X.W.: Ballistic electron transport in hybrid ferromagnet/two-dimensional electron gas sandwich nanostructure: Spin polarization and magnetoresistance effect. J. Appl. Phys. 105, 013708-1–013708-5 (2009)
18.
Zurück zum Zitat Wang, Y., Chen, N.F., Zhang, X.W., Chen, X.F., Yang, X.L., Yin, Z.G., Bai, Y.M.: Electric-tunable magnetoresistance effect in two-dimensional electron gas modulated by hybrid magnetic-electric barrier nanostructure. Phys. Lett. A 373, 1983–1987 (2009)CrossRef Wang, Y., Chen, N.F., Zhang, X.W., Chen, X.F., Yang, X.L., Yin, Z.G., Bai, Y.M.: Electric-tunable magnetoresistance effect in two-dimensional electron gas modulated by hybrid magnetic-electric barrier nanostructure. Phys. Lett. A 373, 1983–1987 (2009)CrossRef
19.
Zurück zum Zitat Lu, J.D.: The magnetoresistance effect in a nanostructure with the periodic magnetic barriers. Appl. Surf. Sci. 254, 3939–3942 (2008)CrossRef Lu, J.D.: The magnetoresistance effect in a nanostructure with the periodic magnetic barriers. Appl. Surf. Sci. 254, 3939–3942 (2008)CrossRef
20.
Zurück zum Zitat Lu, J.D.: Giant magnetoresistance effect in a magnetic nanostructure. Superlatt. Microstruct. 49, 144–150 (2011)CrossRef Lu, J.D.: Giant magnetoresistance effect in a magnetic nanostructure. Superlatt. Microstruct. 49, 144–150 (2011)CrossRef
21.
Zurück zum Zitat Wang, H.Y., Duan, Z.G., Liao, W.H., Zhou, G.H.: Spin-dependent transport for a two-dimensional electron gas with magnetic barriers. Chin. Phys. B 19, 037301-1–037301-5 (2010) Wang, H.Y., Duan, Z.G., Liao, W.H., Zhou, G.H.: Spin-dependent transport for a two-dimensional electron gas with magnetic barriers. Chin. Phys. B 19, 037301-1–037301-5 (2010)
22.
Zurück zum Zitat Lu, M.W., Wang, Z.Y., Liang, Y.L., An, Y.B., Li, L.Q.: Structurally manipulating electron-spin polarization via \(\delta \)-doping in a magnetic nanostructure. Appl. Phys. Lett. 102, 022410-1–022410-5 (2013)CrossRef Lu, M.W., Wang, Z.Y., Liang, Y.L., An, Y.B., Li, L.Q.: Structurally manipulating electron-spin polarization via \(\delta \)-doping in a magnetic nanostructure. Appl. Phys. Lett. 102, 022410-1–022410-5 (2013)CrossRef
23.
Zurück zum Zitat Lu, M.W., Wang, Z.Y., Liang, Y.L., An, Y.B., Li, L.Q.: Controllable electron-spin polarization by \(\delta \)-doping in a hybrid ferromagnet and semiconductor nanostructure. EPL 101, 47001-1–47001-6 (2013) Lu, M.W., Wang, Z.Y., Liang, Y.L., An, Y.B., Li, L.Q.: Controllable electron-spin polarization by \(\delta \)-doping in a hybrid ferromagnet and semiconductor nanostructure. EPL 101, 47001-1–47001-6 (2013)
24.
Zurück zum Zitat Capasso, F., Mohammed, K., Cho, A.Y., Hull, R., Hutchinson, A.L.: Effective mass filtering: Giant quantum amplification of the photocurrent in a semiconductor superlattice. Appl. Phys. Lett. 47, 420–422 (1985)CrossRef Capasso, F., Mohammed, K., Cho, A.Y., Hull, R., Hutchinson, A.L.: Effective mass filtering: Giant quantum amplification of the photocurrent in a semiconductor superlattice. Appl. Phys. Lett. 47, 420–422 (1985)CrossRef
25.
Zurück zum Zitat Xu, H.Z., Shi, Z.: Comment on ‘effects of the localized state inside the barrier on resonant tunneling in double-barrier quantum wells’. Phys. Rev. B 69, 237201-1–237201-4 (2004) Xu, H.Z., Shi, Z.: Comment on ‘effects of the localized state inside the barrier on resonant tunneling in double-barrier quantum wells’. Phys. Rev. B 69, 237201-1–237201-4 (2004)
26.
Zurück zum Zitat Kong, Y.H., Chen, S.Y., Li, A.H., Fu, X.: Controllable giant magnetoresistance effect in a \(\delta \)-doped magnetically confined semiconductor heterostructure nanostructure. Vacuum 122, 43–46 (2015)CrossRef Kong, Y.H., Chen, S.Y., Li, A.H., Fu, X.: Controllable giant magnetoresistance effect in a \(\delta \)-doped magnetically confined semiconductor heterostructure nanostructure. Vacuum 122, 43–46 (2015)CrossRef
27.
Zurück zum Zitat Lu, M.W., Cao, X.L., Huang, X.H., Jiang, Y.Q., Yang, S.P.: Controllable giant magnetoresistance effect by the \(\delta \)-dopingin a magnetically confined semiconductor heterostructure. Appl. Surf. Sci. 360, 989–993 (2016)CrossRef Lu, M.W., Cao, X.L., Huang, X.H., Jiang, Y.Q., Yang, S.P.: Controllable giant magnetoresistance effect by the \(\delta \)-dopingin a magnetically confined semiconductor heterostructure. Appl. Surf. Sci. 360, 989–993 (2016)CrossRef
28.
Zurück zum Zitat Shen, L.H., Zhang, G.L., Yang, D.C.: Controllable GMR device in a \(\delta \)-doped, magnetically and electrically modulated, GaAs/Al\(_{x}\)Ga\(_{1-x}\)As heterostructure. Physica E 83, 450–454 (2016)CrossRef Shen, L.H., Zhang, G.L., Yang, D.C.: Controllable GMR device in a \(\delta \)-doped, magnetically and electrically modulated, GaAs/Al\(_{x}\)Ga\(_{1-x}\)As heterostructure. Physica E 83, 450–454 (2016)CrossRef
29.
Zurück zum Zitat Jiang, Y.Q., Lu, M.W., Huang, X.H., Yang, S.P., Tang, Q.: Manipulable GMR effect in a d-doped magnetically confined semiconductor heterostructure. J. Electron. Mater. 45, 2796–2801 (2016)CrossRef Jiang, Y.Q., Lu, M.W., Huang, X.H., Yang, S.P., Tang, Q.: Manipulable GMR effect in a d-doped magnetically confined semiconductor heterostructure. J. Electron. Mater. 45, 2796–2801 (2016)CrossRef
30.
Zurück zum Zitat Kong, Y.H., Jiang, Y.Q., Fu, X., Li, A.H.: Manipulable MR effect in a \(\delta \)-doped magnetic nanostructure. Int. J. Mod. Phys. B 30, 1650132-1–1650132-10 (2016)MathSciNet Kong, Y.H., Jiang, Y.Q., Fu, X., Li, A.H.: Manipulable MR effect in a \(\delta \)-doped magnetic nanostructure. Int. J. Mod. Phys. B 30, 1650132-1–1650132-10 (2016)MathSciNet
31.
Zurück zum Zitat Nogaret, A., Bending, S.J., Henini, M.: Resistance resonance effects through magnetic edge states. Phys. Rev. Lett. 84, 2231–2234 (2000)CrossRef Nogaret, A., Bending, S.J., Henini, M.: Resistance resonance effects through magnetic edge states. Phys. Rev. Lett. 84, 2231–2234 (2000)CrossRef
32.
Zurück zum Zitat Lu, M.W., Zhang, L.D., Yan, X.H.: Spin polarization of electrons tunneling through magnetic-barrier nanostructures. Phys. Rev. B 66, 224412-1–224412-8 (2002) Lu, M.W., Zhang, L.D., Yan, X.H.: Spin polarization of electrons tunneling through magnetic-barrier nanostructures. Phys. Rev. B 66, 224412-1–224412-8 (2002)
33.
Zurück zum Zitat Büttiker, M.: Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761–1764 (1986)CrossRef Büttiker, M.: Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761–1764 (1986)CrossRef
Metadaten
Titel
A GMR device based on a magnetic nanostructure with a -doping
verfasst von
Xu-Hui Liu
Zheng-Hua Tang
Yong-Hong Kong
Xi Fu
Yan-Jun Gong
Publikationsdatum
11.11.2016
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2017
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0931-1

Weitere Artikel der Ausgabe 1/2017

Journal of Computational Electronics 1/2017 Zur Ausgabe

Neuer Inhalt