Skip to main content
Erschienen in: Cognitive Computation 3/2014

01.09.2014

A Gradient-Based Neural Network Method for Solving Strictly Convex Quadratic Programming Problems

verfasst von: Alireza Nazemi, Masoomeh Nazemi

Erschienen in: Cognitive Computation | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we study a gradient-based neural network method for solving strictly convex quadratic programming (SCQP) problems. By converting the SCQP problem into a system of ordinary differential equation (ODE), we are able to show that the solution trajectory of this ODE tends to the set of stationary points of the original optimization problem. It is shown that the proposed neural network is stable in the sense of Lyapunov and can converge to an exact optimal solution of the original problem. It is also found that a larger scaling factor leads to a better convergence rate of the trajectory. The simulation results also show that the proposed neural network is feasible and efficient. The simulation results are very attractive.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Agrawal SK, Fabien BC. Optimization of dynamic systems. Netherlands: Kluwer Academic Publishers; 1999.CrossRef Agrawal SK, Fabien BC. Optimization of dynamic systems. Netherlands: Kluwer Academic Publishers; 1999.CrossRef
2.
Zurück zum Zitat Ai W, Song YJ, Chen YP. An improved neural network for solving optimization of quadratic programming problems. In: Proceedings of the fifth international conference on machine learning and cybernetics, Dalian; 2006. p.13–6. Ai W, Song YJ, Chen YP. An improved neural network for solving optimization of quadratic programming problems. In: Proceedings of the fifth international conference on machine learning and cybernetics, Dalian; 2006. p.13–6.
3.
Zurück zum Zitat Anguita D, Boni A. Improved neural network for SVM learning. IEEE Trans Neural Netw. 2002;13:1243–44.PubMedCrossRef Anguita D, Boni A. Improved neural network for SVM learning. IEEE Trans Neural Netw. 2002;13:1243–44.PubMedCrossRef
4.
Zurück zum Zitat Avriel M. Nonlinear programming: analysis and methods. Englewood Cliffs, NJ: Prentice-Hall; 1976. Avriel M. Nonlinear programming: analysis and methods. Englewood Cliffs, NJ: Prentice-Hall; 1976.
5.
Zurück zum Zitat Bazaraa MS, Sherali HD, Shetty CM. Nonlinear programming—theory and algorithms, 2nd ed. New York: Wiley; 1993. Bazaraa MS, Sherali HD, Shetty CM. Nonlinear programming—theory and algorithms, 2nd ed. New York: Wiley; 1993.
6.
Zurück zum Zitat Bertsekas DP. Parallel and distributed computation: numerical methods. Englewood Cliffs, NJ: Prentice-Hall; 1989. Bertsekas DP. Parallel and distributed computation: numerical methods. Englewood Cliffs, NJ: Prentice-Hall; 1989.
7.
Zurück zum Zitat Boggs PT, Domich PD, Rogers JE. An interior point method for general large-scale quadratic programming problems. Ann Oper Res. 1996;62:419–37.CrossRef Boggs PT, Domich PD, Rogers JE. An interior point method for general large-scale quadratic programming problems. Ann Oper Res. 1996;62:419–37.CrossRef
8.
Zurück zum Zitat Boland NL. A dual-active-set algorithm for positive semi-definite quadratic programming. Math Program. 1996;78:1–27.CrossRef Boland NL. A dual-active-set algorithm for positive semi-definite quadratic programming. Math Program. 1996;78:1–27.CrossRef
9.
Zurück zum Zitat Boyd S, Vandenberghe L. Convex optimization. Cambridge: Cambridge University Press; 2004.CrossRef Boyd S, Vandenberghe L. Convex optimization. Cambridge: Cambridge University Press; 2004.CrossRef
10.
Zurück zum Zitat Facchinei F, Jiang H, Qi L. A smoothing method for mathematical programs with equilibrium constraints. Math Program. 1999;35:107-34.CrossRef Facchinei F, Jiang H, Qi L. A smoothing method for mathematical programs with equilibrium constraints. Math Program. 1999;35:107-34.CrossRef
11.
Zurück zum Zitat Fletcher R. Practical methods of optimization. New York: Wiley; 1981. Fletcher R. Practical methods of optimization. New York: Wiley; 1981.
12.
Zurück zum Zitat Hale JK. Ordinary differential equations. New York: Wiley-Interscience; 1969. Hale JK. Ordinary differential equations. New York: Wiley-Interscience; 1969.
13.
Zurück zum Zitat Hu SL, Huang ZH, Chen JS. Properties of a family of generalized NCP-functions and a derivative free algorithm for complementarity problems. J Comput Appl Math. 2009;230:69–82.CrossRef Hu SL, Huang ZH, Chen JS. Properties of a family of generalized NCP-functions and a derivative free algorithm for complementarity problems. J Comput Appl Math. 2009;230:69–82.CrossRef
14.
Zurück zum Zitat Huang YC. A novel method to handle inequality constraints for convex programming neural network. Neural Process Lett. 2002;16:17–27.CrossRef Huang YC. A novel method to handle inequality constraints for convex programming neural network. Neural Process Lett. 2002;16:17–27.CrossRef
15.
Zurück zum Zitat Jiang M, Zhao Y, Shen Y. A modified neural network for linear variational inequalities and quadratic optimization problems. Lecture Notes in Computer Science, 5553, Springer, Berlin: Heidelberg; 2009.p. 1–9. Jiang M, Zhao Y, Shen Y. A modified neural network for linear variational inequalities and quadratic optimization problems. Lecture Notes in Computer Science, 5553, Springer, Berlin: Heidelberg; 2009.p. 1–9.
16.
Zurück zum Zitat Kalouptisidis N. Signal processing systems, theory and design. New York: Wiley; 1997. Kalouptisidis N. Signal processing systems, theory and design. New York: Wiley; 1997.
17.
Zurück zum Zitat Kennedy MP, Chua LO. Neural networks for nonlinear programming. IEEE Trans Circuits Syst. 1988;35:554–62.CrossRef Kennedy MP, Chua LO. Neural networks for nonlinear programming. IEEE Trans Circuits Syst. 1988;35:554–62.CrossRef
18.
Zurück zum Zitat Lillo WE, Loh MH, Hui S, Zăk SH. On solving constrained optimization problems with neural networks: a penalty method approach. IEEE Trans Neural Netw. 1993;4(6):931–39.PubMedCrossRef Lillo WE, Loh MH, Hui S, Zăk SH. On solving constrained optimization problems with neural networks: a penalty method approach. IEEE Trans Neural Netw. 1993;4(6):931–39.PubMedCrossRef
19.
Zurück zum Zitat Liu Q, Cao J. Global exponential stability of discrete-time recurrent neural network for solving quadratic programming problems subject to linear constraints. Neurocomputing. 2011;74:3494–01.CrossRef Liu Q, Cao J. Global exponential stability of discrete-time recurrent neural network for solving quadratic programming problems subject to linear constraints. Neurocomputing. 2011;74:3494–01.CrossRef
20.
Zurück zum Zitat Liu Q, Wang J. A one-layer recurrent neural network with a discontinuous hard-limiting activation function for quadratic programming. IEEE Trans Neural Netw. 2008;19:558–70.PubMedCrossRef Liu Q, Wang J. A one-layer recurrent neural network with a discontinuous hard-limiting activation function for quadratic programming. IEEE Trans Neural Netw. 2008;19:558–70.PubMedCrossRef
21.
Zurück zum Zitat Liu Q, Zhao Y. A continuous-time recurrent neural network for real-time support vector regression. In: Computational Intelligence in Control and Automation (CICA), 2013 IEEE Symposium on, 16–19 April 2013; p. 189–193. Liu Q, Zhao Y. A continuous-time recurrent neural network for real-time support vector regression. In: Computational Intelligence in Control and Automation (CICA), 2013 IEEE Symposium on, 16–19 April 2013; p. 189–193.
22.
Zurück zum Zitat Maa CY, Shanblatt MA. Linear and quadratic programming neural network analysis. IEEE Trans Neural Netw. 1992;3(4):580–94.PubMedCrossRef Maa CY, Shanblatt MA. Linear and quadratic programming neural network analysis. IEEE Trans Neural Netw. 1992;3(4):580–94.PubMedCrossRef
23.
Zurück zum Zitat Malek A, Yashtini M. Image fusion algorithms for color and gray level images based on LCLS method and novel artificial neural network. Neurocomputing. 2010;73:937–43.CrossRef Malek A, Yashtini M. Image fusion algorithms for color and gray level images based on LCLS method and novel artificial neural network. Neurocomputing. 2010;73:937–43.CrossRef
24.
Zurück zum Zitat Miller RK, Michel AN. Ordinary differential equations. NewYork: Academic Press; 1982. Miller RK, Michel AN. Ordinary differential equations. NewYork: Academic Press; 1982.
25.
Zurück zum Zitat More JJ, Toroaldo G. On the solution of large quadratic programming problems with bound constraints. SIAM J Optim. 1991;1:93–13.CrossRef More JJ, Toroaldo G. On the solution of large quadratic programming problems with bound constraints. SIAM J Optim. 1991;1:93–13.CrossRef
26.
Zurück zum Zitat Nazemi AR. A dynamical model for solving degenerate quadratic minimax problems with constraints. J Comput Appl Math. 2011;236:1282–95.CrossRef Nazemi AR. A dynamical model for solving degenerate quadratic minimax problems with constraints. J Comput Appl Math. 2011;236:1282–95.CrossRef
27.
Zurück zum Zitat Nazemi AR. A dynamic system model for solving convex nonlinear optimization problems. Commun Nonlinear Sci Numer Simul. 2012;17:1696–05.CrossRef Nazemi AR. A dynamic system model for solving convex nonlinear optimization problems. Commun Nonlinear Sci Numer Simul. 2012;17:1696–05.CrossRef
28.
Zurück zum Zitat Nazemi AR, Omidi F. A capable neural network model for solving the maximum flow problem. J Comput Appl Math. 2012;236:3498–13.CrossRef Nazemi AR, Omidi F. A capable neural network model for solving the maximum flow problem. J Comput Appl Math. 2012;236:3498–13.CrossRef
29.
Zurück zum Zitat Nazemi AR, Omidi F. An efficient dynamic model for solving the shortest path problem. Transp Res Part C Emerg Technol. 2013;26:1–19.CrossRef Nazemi AR, Omidi F. An efficient dynamic model for solving the shortest path problem. Transp Res Part C Emerg Technol. 2013;26:1–19.CrossRef
30.
Zurück zum Zitat Pan S-H, Chen J-S. A semismooth Newton method for the SOCCP based on a one-parametric class of SOC complementarity functions. Comput Optim Appl. 2010;45:59–88.CrossRef Pan S-H, Chen J-S. A semismooth Newton method for the SOCCP based on a one-parametric class of SOC complementarity functions. Comput Optim Appl. 2010;45:59–88.CrossRef
31.
Zurück zum Zitat Pyne IB. Linear programming on a electronic analogue computer. Trans Am Inst Elect Eng. 1956;75:139-43. Pyne IB. Linear programming on a electronic analogue computer. Trans Am Inst Elect Eng. 1956;75:139-43.
32.
Zurück zum Zitat Quarteroni A, Sacco R, Saleri F. Numerical mathematics. Texts in applied mathematics, vol. 37, 2nd ed. Berlin: Springer; 2007. Quarteroni A, Sacco R, Saleri F. Numerical mathematics. Texts in applied mathematics, vol. 37, 2nd ed. Berlin: Springer; 2007.
33.
Zurück zum Zitat Sun D, Sun J. Strong semismoothness of the Fischer–Burmeister SDC and SOC complementarity functions. Math Program. 2005;103(3):575–81.CrossRef Sun D, Sun J. Strong semismoothness of the Fischer–Burmeister SDC and SOC complementarity functions. Math Program. 2005;103(3):575–81.CrossRef
34.
Zurück zum Zitat Sun J, Zhang L. A globally convergent method based on Fischer–Burmeister operators for solving second-order cone constrained variational inequality problems. Comput Math Appl. 2009;58:1936–46.CrossRef Sun J, Zhang L. A globally convergent method based on Fischer–Burmeister operators for solving second-order cone constrained variational inequality problems. Comput Math Appl. 2009;58:1936–46.CrossRef
35.
Zurück zum Zitat Sun J, Chen J-S, Ko C-H. Neural networks for solving second-order cone constrained variational inequality problem. Comput Optim Appl. 2012;51:623–48.CrossRef Sun J, Chen J-S, Ko C-H. Neural networks for solving second-order cone constrained variational inequality problem. Comput Optim Appl. 2012;51:623–48.CrossRef
36.
Zurück zum Zitat Tao Q, Cao J, Sun D. A simple and high performance neural network for quadratic programming problems. Appl Math Comput. 2001;124:251–60.CrossRef Tao Q, Cao J, Sun D. A simple and high performance neural network for quadratic programming problems. Appl Math Comput. 2001;124:251–60.CrossRef
37.
Zurück zum Zitat Xia Y, Feng G. An improved network for convex quadratic optimization with application to real-time beamforming. Neurocomputing. 2005;64:359–74.CrossRef Xia Y, Feng G. An improved network for convex quadratic optimization with application to real-time beamforming. Neurocomputing. 2005;64:359–74.CrossRef
38.
Zurück zum Zitat Xia Y, Wang J. Primal neural networks for solving convex quadratic programs. In: International joint conference on neural networks; 1999. p. 582–87. Xia Y, Wang J. Primal neural networks for solving convex quadratic programs. In: International joint conference on neural networks; 1999. p. 582–87.
39.
Zurück zum Zitat Xia Y, Wang J. A recurrent neural network for solving linear projection equations. Neural Netw. 2000;13:337–50.PubMedCrossRef Xia Y, Wang J. A recurrent neural network for solving linear projection equations. Neural Netw. 2000;13:337–50.PubMedCrossRef
40.
Zurück zum Zitat Xia Y, Wang J. A general projection neural network for solving monotone variational inequality and related optimization problems. IEEE Trans Neural Netw. 2004;15:318–28.PubMedCrossRef Xia Y, Wang J. A general projection neural network for solving monotone variational inequality and related optimization problems. IEEE Trans Neural Netw. 2004;15:318–28.PubMedCrossRef
41.
Zurück zum Zitat Xia Y, Wang J. A one–layer recurrent neural network for support vector machine learning. IEEE Trans Syst Man Cybern Part B: Cybern. 2004;34:1261–69.CrossRef Xia Y, Wang J. A one–layer recurrent neural network for support vector machine learning. IEEE Trans Syst Man Cybern Part B: Cybern. 2004;34:1261–69.CrossRef
42.
Zurück zum Zitat Xia Y, Leung H, Wang J. A projection neural network and its application to constrained optimization problems. IEEE Trans Circuits Syst. 2002;49:447–58.CrossRef Xia Y, Leung H, Wang J. A projection neural network and its application to constrained optimization problems. IEEE Trans Circuits Syst. 2002;49:447–58.CrossRef
43.
Zurück zum Zitat Xia Y, Feng G. Solving convex quadratic programming problems by an modefied neural network with exponential convergence. IEEE International Conference Neural Networks and Signal Processing, Nanjing, China; 2003. p. 14–17. Xia Y, Feng G. Solving convex quadratic programming problems by an modefied neural network with exponential convergence. IEEE International Conference Neural Networks and Signal Processing, Nanjing, China; 2003. p. 14–17.
44.
Zurück zum Zitat Xia Y, Feng G, Wang J. A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equation. Neural Networks. 2004;17:1003–15.PubMedCrossRef Xia Y, Feng G, Wang J. A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equation. Neural Networks. 2004;17:1003–15.PubMedCrossRef
45.
Zurück zum Zitat Xue X, Bian W. A project neural network for solving degenerate convex quadratic program. Neurocomputing. 2007;70:2449–59.CrossRef Xue X, Bian W. A project neural network for solving degenerate convex quadratic program. Neurocomputing. 2007;70:2449–59.CrossRef
46.
Zurück zum Zitat Yang Y, Cao J. A feedback neural network for solving convex constraint optimization problems. Appl Math Comput. 2008;201:340–50.CrossRef Yang Y, Cao J. A feedback neural network for solving convex constraint optimization problems. Appl Math Comput. 2008;201:340–50.CrossRef
47.
Zurück zum Zitat Zhang J, Zhang L. An augmented lagrangian method for a class of inverse quadratic programming problems. Appl Math Optim. 2010;61:57–83.CrossRef Zhang J, Zhang L. An augmented lagrangian method for a class of inverse quadratic programming problems. Appl Math Optim. 2010;61:57–83.CrossRef
Metadaten
Titel
A Gradient-Based Neural Network Method for Solving Strictly Convex Quadratic Programming Problems
verfasst von
Alireza Nazemi
Masoomeh Nazemi
Publikationsdatum
01.09.2014
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 3/2014
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-014-9249-0

Weitere Artikel der Ausgabe 3/2014

Cognitive Computation 3/2014 Zur Ausgabe