Skip to main content
Erschienen in:

15.08.2022

A Graph-Based Deep Reinforcement Learning Approach to Grasping Fully Occluded Objects

verfasst von: Guoyu Zuo, Jiayuan Tong, Zihao Wang, Daoxiong Gong

Erschienen in: Cognitive Computation | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Grasping in cluttered scenes is an important issue in robotic manipulation. The cooperation of grasping and pushing actions based on reinforcement learning is an effective means to obtain the target object when it is completely blocked or there is no suitable grasping position around it. When exploring invisible objects, many existing methods depend excessively on model design and redundant grasping actions. We propose a graph-based deep reinforcement learning model to efficiently explore invisible objects and improve the performance for cooperative grasping and pushing tasks. Our model first extracts the state features and then estimates the Q value with different graph Q-Nets according to whether the target object is found. The graph-based Q-learning model contains an encoder, a graph reasoning module and a decoder. The encoder is used to integrate the state features such that the features of one region include those of other regions. The graph reasoning module captures the internal relationships of features between different regions through graph convolution networks. The decoder maps the features transformed by reasoning to the original state features. Our method achieves a 100% success rate in the task of exploring the target object and a success rate of more than 90% in the task of grasping and pushing cooperatively in simulation experiment, which performs better than many existing state-of-the-art methods. Our method is an effective means to help robots obtain completely occluded objects by grasping and pushing cooperation in the cluttered scenes. The verification experiment on the real robot further shows the generalization and practicability of our proposed model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lenz I, Lee H, Saxena A. Deep learning for detecting robotic grasps. Int J Robot Res. 2015;34(4–5):705–24.CrossRef Lenz I, Lee H, Saxena A. Deep learning for detecting robotic grasps. Int J Robot Res. 2015;34(4–5):705–24.CrossRef
2.
Zurück zum Zitat Redmon J, Angelova A. Real-time grasp detection using convolutional neural networks. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2015. p. 1316–22. Redmon J, Angelova A. Real-time grasp detection using convolutional neural networks. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2015. p. 1316–22.
3.
Zurück zum Zitat ten Pas A, Gualtieri M, Saenko K, Platt R. Grasp pose detection in point clouds. Int J Robot Res. 2017;36(13–14):1455–73. ten Pas A, Gualtieri M, Saenko K, Platt R. Grasp pose detection in point clouds. Int J Robot Res. 2017;36(13–14):1455–73.
4.
Zurück zum Zitat Ni P, Zhang W, Bai W, Lin M, Cao Q. A new approach based on two-stream cnns for novel objects grasping in clutter. J Intell Robot Syst. 2019;94(1):161–77.CrossRef Ni P, Zhang W, Bai W, Lin M, Cao Q. A new approach based on two-stream cnns for novel objects grasping in clutter. J Intell Robot Syst. 2019;94(1):161–77.CrossRef
5.
Zurück zum Zitat Yang Y, Liang H, Choi C. A deep learning approach to grasping the invisible. IEEE Robotics and Automation Letters. 2020;5(2):2232–9.CrossRef Yang Y, Liang H, Choi C. A deep learning approach to grasping the invisible. IEEE Robotics and Automation Letters. 2020;5(2):2232–9.CrossRef
6.
Zurück zum Zitat Shao Q, Hu J, Wang W, Fang Y, Liu W, Qi J, Ma J. Suction grasp region prediction using self-supervised learning for object picking in dense clutter. In: 2019 IEEE 5th International Conference on Mechatronics System and Robots (ICMSR). IEEE; 2019. p. 7–12. Shao Q, Hu J, Wang W, Fang Y, Liu W, Qi J, Ma J. Suction grasp region prediction using self-supervised learning for object picking in dense clutter. In: 2019 IEEE 5th International Conference on Mechatronics System and Robots (ICMSR). IEEE; 2019.  p. 7–12.
7.
Zurück zum Zitat Bhagat S, Banerjee H, Ho Tse ZT, Ren H. Deep reinforcement learning for soft, flexible robots: Brief review with impending challenges. Robotics. 2019;8(1):4.CrossRef Bhagat S, Banerjee H, Ho Tse ZT, Ren H. Deep reinforcement learning for soft, flexible robots: Brief review with impending challenges. Robotics. 2019;8(1):4.CrossRef
8.
Zurück zum Zitat Berscheid L, Meßner P, Kröger T. Robot learning of shifting objects for grasping in cluttered environments. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2019. p. 612–18. Berscheid L, Meßner P, Kröger T. Robot learning of shifting objects for grasping in cluttered environments. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2019. p. 612–18.
9.
Zurück zum Zitat Zeng A, Song S, Welker S, Lee J, Rodriguez A, Funkhouser T. Learning synergies between pushing and grasping with self-supervised deep reinforcement learning. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2018. p. 4238–245. Zeng A, Song S, Welker S, Lee J, Rodriguez A, Funkhouser T. Learning synergies between pushing and grasping with self-supervised deep reinforcement learning. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2018. p. 4238–245.
10.
Zurück zum Zitat Boularias A, Bagnell JA, Stentz A. Learning to manipulate unknown objects in clutter by reinforcement. Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015. Boularias A, Bagnell JA, Stentz A. Learning to manipulate unknown objects in clutter by reinforcement. Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015.
11.
Zurück zum Zitat Zhang H, Lan X, Zhou X, Tian Z, Zhang Y, Zheng N. Visual manipulation relationship recognition in object-stacking scenes. Pattern Recogn Lett. 2020;140:34–42.CrossRef Zhang H, Lan X, Zhou X, Tian Z, Zhang Y, Zheng N. Visual manipulation relationship recognition in object-stacking scenes. Pattern Recogn Lett. 2020;140:34–42.CrossRef
12.
Zurück zum Zitat Zuo G, Tong J, Liu H, Chen W, Li J. Graph-based visual manipulation relationship reasoning network for robotic grasping. Front Neurorobot. 2021;15. Zuo G, Tong J, Liu H, Chen W, Li J. Graph-based visual manipulation relationship reasoning network for robotic grasping. Front Neurorobot. 2021;15.
13.
Zurück zum Zitat Zhang H, Lan X, Bai S, Zhou X, Tian Z, Zheng N. Roi-based robotic grasp detection for object overlapping scenes. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2019. p. 4768–75. Zhang H, Lan X, Bai S, Zhou X, Tian Z, Zheng N. Roi-based robotic grasp detection for object overlapping scenes. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2019. p. 4768–75.
14.
Zurück zum Zitat Ren Y, Zhu C, Xiao S. Deformable faster E-CNN with aggregating multi-layer features for partially occluded object detection in optical remote sensing images. Remote Sens. 2018;10.9:1470. Ren Y, Zhu C, Xiao S. Deformable faster E-CNN with aggregating multi-layer features for partially occluded object detection in optical remote sensing images. Remote Sens. 2018;10.9:1470.
15.
Zurück zum Zitat Boroushaki T, Leng J, Clester I, Rodriguez A, Adib F. Robotic grasping of fully-occluded objects using RF perception. In: 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2021. p. 923–29. Boroushaki T, Leng J, Clester I, Rodriguez A, Adib F. Robotic grasping of fully-occluded objects using RF perception. In: 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2021. p. 923–29.
16.
Zurück zum Zitat Cui Y, Ooga JI, Ogawa A, Matsubara T. Probabilistic active filtering with gaussian processes for occluded object search in clutter. Appl Intell. 2020;50(12):4310–24.CrossRef Cui Y, Ooga JI, Ogawa A, Matsubara T. Probabilistic active filtering with gaussian processes for occluded object search in clutter. Appl Intell. 2020;50(12):4310–24.CrossRef
17.
Zurück zum Zitat Danielczuk M, Kurenkov A, Balakrishna A, Matl M, Wang D, Martín-Martín R, ... Goldberg K. Mechanical search: Multi-step retrieval of a target object occluded by clutter. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE; 2019. p. 1614–621. Danielczuk M, Kurenkov A, Balakrishna A, Matl M, Wang D, Martín-Martín R, ...  Goldberg K. Mechanical search: Multi-step retrieval of a target object occluded by clutter. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE; 2019. p. 1614–621.
18.
Zurück zum Zitat Danielczuk M, Angelova A, Vanhoucke V, Goldberg K. X-ray: Mechanical search for an occluded object by minimizing support of learned occupancy distributions. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2020. p. 9577–584. Danielczuk M, Angelova A, Vanhoucke V, Goldberg K. X-ray: Mechanical search for an occluded object by minimizing support of learned occupancy distributions. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2020. p. 9577–584.
19.
20.
Zurück zum Zitat Chen Y, Rohrbach M, Yan Z, Shuicheng Y, Feng J, Kalantidis Y. Graph-based global reasoning networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. p. 433–42. Chen Y, Rohrbach M, Yan Z, Shuicheng Y, Feng J, Kalantidis Y. Graph-based global reasoning networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. p. 433–42.
21.
Zurück zum Zitat Satorras VG, Estrach JB. Few-shot learning with graph neural networks. In: International Conference on Learning Representations. 2018. Satorras VG, Estrach JB. Few-shot learning with graph neural networks. In: International Conference on Learning Representations. 2018.
22.
Zurück zum Zitat Kampffmeyer M, Chen Y, Liang X, Wang H, Zhang Y, Xing EP. Rethinking knowledge graph propagation for zero-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. p. 11487–96. Kampffmeyer M, Chen Y, Liang X, Wang H, Zhang Y, Xing EP. Rethinking knowledge graph propagation for zero-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. p. 11487–96.
24.
Zurück zum Zitat Jiang J, Dun C, Huang T, Lu Z. Graph convolutional reinforcement learning. In: International Conference on Learning Representations. 2019. Jiang J, Dun C, Huang T, Lu Z. Graph convolutional reinforcement learning. In: International Conference on Learning Representations. 2019.
25.
Zurück zum Zitat Zambaldi V, Raposo D, Santoro A, Bapst V, Li Y, Babuschkin I, ... Battaglia P. Relational deep reinforcement learning. 2018. arXiv preprint arXiv:1806.01830. Zambaldi V, Raposo D, Santoro A, Bapst V, Li Y, Babuschkin I, ... Battaglia P. Relational deep reinforcement learning. 2018. arXiv preprint arXiv:​1806.​01830.
26.
Zurück zum Zitat Li R, Jabri A, Darrell T, Agrawal P. Towards practical multi-object manipulation using relational reinforcement learning. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2020. p. 4051–58. Li R, Jabri A, Darrell T, Agrawal P. Towards practical multi-object manipulation using relational reinforcement learning. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2020. p. 4051–58.
27.
Zurück zum Zitat Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, ... Hassabis D. Human-level control through deep reinforcement learning. Nature. 2015;518(7540):529–33. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, ... Hassabis D. Human-level control through deep reinforcement learning. Nature. 2015;518(7540):529–33.
28.
Zurück zum Zitat Rohmer MFE, Singh SPN. V-REP: a versatile and scalable robot simulation framework. In: IROS. 2013. Rohmer MFE, Singh SPN. V-REP: a versatile and scalable robot simulation framework. In: IROS. 2013.
29.
Zurück zum Zitat Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision. 2017. p. 618–26. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision. 2017. p. 618–26.
Metadaten
Titel
A Graph-Based Deep Reinforcement Learning Approach to Grasping Fully Occluded Objects
verfasst von
Guoyu Zuo
Jiayuan Tong
Zihao Wang
Daoxiong Gong
Publikationsdatum
15.08.2022
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 1/2023
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10047-x