Skip to main content
Erschienen in: Neuroinformatics 3/2013

01.07.2013 | Original Article

A Graphics Processing Unit Accelerated Motion Correction Algorithm and Modular System for Real-time fMRI

verfasst von: Dustin Scheinost, Michelle Hampson, Maolin Qiu, Jitendra Bhawnani, R. Todd Constable, Xenophon Papademetris

Erschienen in: Neuroinformatics | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Real-time functional magnetic resonance imaging (rt-fMRI) has recently gained interest as a possible means to facilitate the learning of certain behaviors. However, rt-fMRI is limited by processing speed and available software, and continued development is needed for rt-fMRI to progress further and become feasible for clinical use. In this work, we present an open-source rt-fMRI system for biofeedback powered by a novel Graphics Processing Unit (GPU) accelerated motion correction strategy as part of the BioImage Suite project (www.​bioimagesuite.​org). Our system contributes to the development of rt-fMRI by presenting a motion correction algorithm that provides an estimate of motion with essentially no processing delay as well as a modular rt-fMRI system design. Using empirical data from rt-fMRI scans, we assessed the quality of motion correction in this new system. The present algorithm performed comparably to standard (non real-time) offline methods and outperformed other real-time methods based on zero order interpolation of motion parameters. The modular approach to the rt-fMRI system allows the system to be flexible to the experiment and feedback design, a valuable feature for many applications. We illustrate the flexibility of the system by describing several of our ongoing studies. Our hope is that continuing development of open-source rt-fMRI algorithms and software will make this new technology more accessible and adaptable, and will thereby accelerate its application in the clinical and cognitive neurosciences.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bagarinao, E., Matsuo, K., & Nakai, T. (2003). Real-time functional MRI using a PC cluster. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, 19B, 14–25.CrossRef Bagarinao, E., Matsuo, K., & Nakai, T. (2003). Real-time functional MRI using a PC cluster. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, 19B, 14–25.CrossRef
Zurück zum Zitat Caria, A., Sitaram, R., Veit, R., Begliomini, C., & Birbaumer, N. (2010). Volitional control of anterior insula activity modulates the response to aversive stimuli. A real-time functional magnetic resonance imaging study. Biological Psychiatry, 68, 425–432.PubMedCrossRef Caria, A., Sitaram, R., Veit, R., Begliomini, C., & Birbaumer, N. (2010). Volitional control of anterior insula activity modulates the response to aversive stimuli. A real-time functional magnetic resonance imaging study. Biological Psychiatry, 68, 425–432.PubMedCrossRef
Zurück zum Zitat Caria, A., Sitaram, R., & Birbaumer, N. (2012). Real-Time fMRI: A tool for local brain regulation. Neuroscientist, 18, 487–501. Caria, A., Sitaram, R., & Birbaumer, N. (2012). Real-Time fMRI: A tool for local brain regulation. Neuroscientist, 18, 487–501.
Zurück zum Zitat Christopher deCharms, R. (2008). Applications of real-time fMRI. Nature Reviews Neuroscience, 9, 720–729.PubMedCrossRef Christopher deCharms, R. (2008). Applications of real-time fMRI. Nature Reviews Neuroscience, 9, 720–729.PubMedCrossRef
Zurück zum Zitat Cox, R. W., & Jesmanowicz, A. (1999). Real-time 3D image registration for functional MRI. Magnetic Resonance in Medicine, 42, 1014–1018.PubMedCrossRef Cox, R. W., & Jesmanowicz, A. (1999). Real-time 3D image registration for functional MRI. Magnetic Resonance in Medicine, 42, 1014–1018.PubMedCrossRef
Zurück zum Zitat Cox, R. W., Jesmanowicz, A., & Hyde, J. S. (1995). Real-time functional magnetic resonance imaging. Magnetic Resonance in Medicine, 33, 230–236.PubMedCrossRef Cox, R. W., Jesmanowicz, A., & Hyde, J. S. (1995). Real-time functional magnetic resonance imaging. Magnetic Resonance in Medicine, 33, 230–236.PubMedCrossRef
Zurück zum Zitat Cusack, R., Veldsman, M., Naci, L., Mitchell, D. J., & Linke, A. C. (2011). Seeing different objects in different ways: Measuring ventral visual tuning to sensory and semantic features with dynamically adaptive imaging. Human Brain Mapping, 33(2):387–397. Cusack, R., Veldsman, M., Naci, L., Mitchell, D. J., & Linke, A. C. (2011). Seeing different objects in different ways: Measuring ventral visual tuning to sensory and semantic features with dynamically adaptive imaging. Human Brain Mapping, 33(2):387–397.
Zurück zum Zitat deCharms, R. C. (2007). Reading and controlling human brain activation using real-time functional magnetic resonance imaging. Trends in Cognitive Sciences, 11, 473–481.PubMedCrossRef deCharms, R. C. (2007). Reading and controlling human brain activation using real-time functional magnetic resonance imaging. Trends in Cognitive Sciences, 11, 473–481.PubMedCrossRef
Zurück zum Zitat deCharms, R. C., Christoff, K., Glover, G. H., Pauly, J. M., Whitfield, S., & Gabrieli, J. D. E. (2004). Learned regulation of spatially localized brain activation using real-time fMRI. NeuroImage, 21, 436–443.PubMedCrossRef deCharms, R. C., Christoff, K., Glover, G. H., Pauly, J. M., Whitfield, S., & Gabrieli, J. D. E. (2004). Learned regulation of spatially localized brain activation using real-time fMRI. NeuroImage, 21, 436–443.PubMedCrossRef
Zurück zum Zitat deCharms, R. C., Maeda, F., Glover, G. H., Ludlow, D., Pauly, J. M., & Soneji, D. (2005). Control over brain activation and pain learned by using real-time functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 102, 18626–18631.PubMedCrossRef deCharms, R. C., Maeda, F., Glover, G. H., Ludlow, D., Pauly, J. M., & Soneji, D. (2005). Control over brain activation and pain learned by using real-time functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 102, 18626–18631.PubMedCrossRef
Zurück zum Zitat Eklund, A., Ohlsson, H., Andersson, M., Rydell, J., Ynnerman, A., & Knutsson, H. (2009). Using Real-Time fMRI to Control a Dynamical System by Brain Activity Classification. Medical Image Computing and Computer-Assisted Intervention – MICCAI, 5761, 1000–1008. Eklund, A., Ohlsson, H., Andersson, M., Rydell, J., Ynnerman, A., & Knutsson, H. (2009). Using Real-Time fMRI to Control a Dynamical System by Brain Activity Classification. Medical Image Computing and Computer-Assisted Intervention – MICCAI, 5761, 1000–1008.
Zurück zum Zitat Esposito, F., Seifritz, E., Formisano, E., Morrone, R., Scarabino, T., Tedeschi, G., et al. (2003). Real-time independent component analysis of fMRI time-series. NeuroImage, 20, 2209–2224.PubMedCrossRef Esposito, F., Seifritz, E., Formisano, E., Morrone, R., Scarabino, T., Tedeschi, G., et al. (2003). Real-time independent component analysis of fMRI time-series. NeuroImage, 20, 2209–2224.PubMedCrossRef
Zurück zum Zitat Gembris, D., Taylor, J. G., Schor, S., Frings, W., Suter, D., & Posse, S. (2000). Functional magnetic resonance imaging in real time (FIRE): sliding-window correlation analysis and reference-vector optimization. Magnetic Resonance in Medicine, 43, 259–268.PubMedCrossRef Gembris, D., Taylor, J. G., Schor, S., Frings, W., Suter, D., & Posse, S. (2000). Functional magnetic resonance imaging in real time (FIRE): sliding-window correlation analysis and reference-vector optimization. Magnetic Resonance in Medicine, 43, 259–268.PubMedCrossRef
Zurück zum Zitat Goebel, R., Zilverstand, A., & Sorger, B. (2011). Real-time fMRI-based brain computer interfacing for neurofeedback therapy and compensation of lost motor functions. Imaging in Medicine, 2, 407–415.CrossRef Goebel, R., Zilverstand, A., & Sorger, B. (2011). Real-time fMRI-based brain computer interfacing for neurofeedback therapy and compensation of lost motor functions. Imaging in Medicine, 2, 407–415.CrossRef
Zurück zum Zitat Hamilton, J. P., Glover, G. H., Hsu, J.-J., Johnson, R. F., & Gotlib, I. H. (2011). Modulation of subgenual anterior cingulate cortex activity with real-time neurofeedback. Human Brain Mapping, 32, 22–31.PubMedCrossRef Hamilton, J. P., Glover, G. H., Hsu, J.-J., Johnson, R. F., & Gotlib, I. H. (2011). Modulation of subgenual anterior cingulate cortex activity with real-time neurofeedback. Human Brain Mapping, 32, 22–31.PubMedCrossRef
Zurück zum Zitat Hampson, M., Scheinost, D., Qiu, M., Bhawnani, J., Lacadie, C. M., Leckman, J. F., et al. (2011a). Biofeedback of real-time functional magnetic resonance imaging data from the supplementary motor area reduces functional connectivity to subcortical regions. Brain Connectivity, 1, 91–98.PubMedCrossRef Hampson, M., Scheinost, D., Qiu, M., Bhawnani, J., Lacadie, C. M., Leckman, J. F., et al. (2011a). Biofeedback of real-time functional magnetic resonance imaging data from the supplementary motor area reduces functional connectivity to subcortical regions. Brain Connectivity, 1, 91–98.PubMedCrossRef
Zurück zum Zitat Hampson, M., Stoica, T., Saksa, J., Scheinost, D., Qiu, M., Bhawnani, J., Pittenger, C., Papademetris, X., Constable T. (2012). Real-time fMRI biofeedback targeting the orbi to frontal cortex for contamination anxiety. Journal of Visual Experiments, (59):e3535. Hampson, M., Stoica, T., Saksa, J., Scheinost, D., Qiu, M., Bhawnani, J., Pittenger, C., Papademetris, X., Constable T. (2012). Real-time fMRI biofeedback targeting the orbi to frontal cortex for contamination anxiety. Journal of Visual Experiments, (59):e3535.
Zurück zum Zitat Hinds, O., Ghosh, S., Thompson, T. W., Yoo, J. J., Whitfield-Gabrieli, S., Triantafyllou, C., et al. (2011). Computing moment-to-moment BOLD activation for real-time neurofeedback. NeuroImage, 54, 361–368.PubMedCrossRef Hinds, O., Ghosh, S., Thompson, T. W., Yoo, J. J., Whitfield-Gabrieli, S., Triantafyllou, C., et al. (2011). Computing moment-to-moment BOLD activation for real-time neurofeedback. NeuroImage, 54, 361–368.PubMedCrossRef
Zurück zum Zitat Joshi, A., Scheinost, D., Okuda, H., Belhachemi, D., Murphy, I., Staib, L., et al. (2011). Unified framework for development, deployment and robust testing of neuroimaging algorithms. Neuroinformatics, 9, 69–84.PubMedCrossRef Joshi, A., Scheinost, D., Okuda, H., Belhachemi, D., Murphy, I., Staib, L., et al. (2011). Unified framework for development, deployment and robust testing of neuroimaging algorithms. Neuroinformatics, 9, 69–84.PubMedCrossRef
Zurück zum Zitat LaConte, S. M., Peltier, S. J., & Hu, X. P. (2007). Real-time fMRI using brain-state classification. Human Brain Mapping, 28, 1033–1044.PubMedCrossRef LaConte, S. M., Peltier, S. J., & Hu, X. P. (2007). Real-time fMRI using brain-state classification. Human Brain Mapping, 28, 1033–1044.PubMedCrossRef
Zurück zum Zitat Lee, S., Ruiz, S., Caria, A., Veit, R., Birbaumer, N., & Sitaram, R. (2011). Detection of cerebral reorganization induced by real-time fMRI feedback training of insula activation. Neurorehabilitation and Neural Repair, 25, 259–267.PubMedCrossRef Lee, S., Ruiz, S., Caria, A., Veit, R., Birbaumer, N., & Sitaram, R. (2011). Detection of cerebral reorganization induced by real-time fMRI feedback training of insula activation. Neurorehabilitation and Neural Repair, 25, 259–267.PubMedCrossRef
Zurück zum Zitat Mathiak, K., & Posse, S. (2001). Evaluation of motion and realignment for functional magnetic resonance imaging in real time. Magnetic Resonance in Medicine, 45, 167–171.PubMedCrossRef Mathiak, K., & Posse, S. (2001). Evaluation of motion and realignment for functional magnetic resonance imaging in real time. Magnetic Resonance in Medicine, 45, 167–171.PubMedCrossRef
Zurück zum Zitat McCaig, R. G., Dixon, M., Keramatian, K., Liu, I., & Christoff, K. (2011). Improved modulation of rostrolateral prefrontal cortex using real-time fMRI training and meta-cognitive awareness. NeuroImage, 55, 1298–1305.PubMedCrossRef McCaig, R. G., Dixon, M., Keramatian, K., Liu, I., & Christoff, K. (2011). Improved modulation of rostrolateral prefrontal cortex using real-time fMRI training and meta-cognitive awareness. NeuroImage, 55, 1298–1305.PubMedCrossRef
Zurück zum Zitat Nakai, T., Bagarinao, E., Matsuo, K., Ohgami, Y., & Kato, C. (2006). Dynamic monitoring of brain activation under visual stimulation using fMRI–The advantage of real-time fMRI with sliding window GLM analysis. Journal of Neuroscience Methods, 157, 158–167.PubMedCrossRef Nakai, T., Bagarinao, E., Matsuo, K., Ohgami, Y., & Kato, C. (2006). Dynamic monitoring of brain activation under visual stimulation using fMRI–The advantage of real-time fMRI with sliding window GLM analysis. Journal of Neuroscience Methods, 157, 158–167.PubMedCrossRef
Zurück zum Zitat Papademetris, X., Vives, K. P., DiStasio, M., Staib, L. H., Neff, M., Flossman, S. et al. (2006). Development of a research interface for image guided intervention: initial application to epilepsy neurosurgery. Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on, pp. 490–493. Papademetris, X., Vives, K. P., DiStasio, M., Staib, L. H., Neff, M., Flossman, S. et al. (2006). Development of a research interface for image guided intervention: initial application to epilepsy neurosurgery. Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on, pp. 490–493.
Zurück zum Zitat Phan, K. L., Fitzgerald, D. A., Gao, K., Moore, G. J., Tancer, M. E., & Posse, S. (2004). Real-time fMRI of cortico-limbic brain activity during emotional processing. NeuroReport, 15, 527–532. Phan, K. L., Fitzgerald, D. A., Gao, K., Moore, G. J., Tancer, M. E., & Posse, S. (2004). Real-time fMRI of cortico-limbic brain activity during emotional processing. NeuroReport, 15, 527–532.
Zurück zum Zitat Posse, S., Binkofski, F., Schneider, F., Gembris, D., Frings, W., Habel, U., et al. (2001). A new approach to measure single-event related brain activity using real-time fMRI: feasibility of sensory, motor, and higher cognitive tasks. Human Brain Mapping, 12, 25–41.PubMedCrossRef Posse, S., Binkofski, F., Schneider, F., Gembris, D., Frings, W., Habel, U., et al. (2001). A new approach to measure single-event related brain activity using real-time fMRI: feasibility of sensory, motor, and higher cognitive tasks. Human Brain Mapping, 12, 25–41.PubMedCrossRef
Zurück zum Zitat Rota, G., Sitaram, R., Veit, R., Erb, M., Weiskopf, N., Dogil, G., et al. (2009). Self-regulation of regional cortical activity using real-time fMRI: the right inferior frontal gyrus and linguistic processing. Human Brain Mapping, 30, 1605–1614.PubMedCrossRef Rota, G., Sitaram, R., Veit, R., Erb, M., Weiskopf, N., Dogil, G., et al. (2009). Self-regulation of regional cortical activity using real-time fMRI: the right inferior frontal gyrus and linguistic processing. Human Brain Mapping, 30, 1605–1614.PubMedCrossRef
Zurück zum Zitat Rota, G., Handjaras, G., Sitaram, R., Birbaumer, N., & Dogil, G. (2011). Reorganization of functional and effective connectivity during real-time fMRI-BCI modulation of prosody processing. Brain and Language, 117, 123–132.PubMedCrossRef Rota, G., Handjaras, G., Sitaram, R., Birbaumer, N., & Dogil, G. (2011). Reorganization of functional and effective connectivity during real-time fMRI-BCI modulation of prosody processing. Brain and Language, 117, 123–132.PubMedCrossRef
Zurück zum Zitat Sander, J., & Kandrot, E. (2010). CUDA by Example: An Introduction to General-Purpose GPU Programming. Addison-Wesley Professional. Sander, J., & Kandrot, E. (2010). CUDA by Example: An Introduction to General-Purpose GPU Programming. Addison-Wesley Professional.
Zurück zum Zitat Shibata, K., Watanabe, T., Sasaki, Y., & Kawato, M. (2011). Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science, 334, 1413–1415.PubMedCrossRef Shibata, K., Watanabe, T., Sasaki, Y., & Kawato, M. (2011). Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science, 334, 1413–1415.PubMedCrossRef
Zurück zum Zitat Sitaram, R., Lee, S., Ruiz, S., Rana, M., Veit, R., & Birbaumer, N. (2010). Real-time support vector classification and feedback of multiple emotional brain states. NeuroImage, 56, 753–765.PubMedCrossRef Sitaram, R., Lee, S., Ruiz, S., Rana, M., Veit, R., & Birbaumer, N. (2010). Real-time support vector classification and feedback of multiple emotional brain states. NeuroImage, 56, 753–765.PubMedCrossRef
Zurück zum Zitat Studholme, C., Hill, D. L., & Hawkes, D. J. (1996). Automated 3-D registration of MR and CT images of the head. Medical Image Analysis, 1, 163–175.PubMedCrossRef Studholme, C., Hill, D. L., & Hawkes, D. J. (1996). Automated 3-D registration of MR and CT images of the head. Medical Image Analysis, 1, 163–175.PubMedCrossRef
Zurück zum Zitat Thesen, S., Heid, O., Mueller, E., & Schad, L. R. (2000). Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magnetic Resonance in Medicine, 44, 457–465.PubMedCrossRef Thesen, S., Heid, O., Mueller, E., & Schad, L. R. (2000). Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magnetic Resonance in Medicine, 44, 457–465.PubMedCrossRef
Zurück zum Zitat Tokuda, J., Fischer, G. S., Papademetris, X., Yaniv, Z., Ibanez, L., Cheng, P., et al. (2009). OpenIGTLink: an open network protocol for image-guided therapy environment. The International Journal of Medical Robotics and Computer Assisted Surgery, 5, 423–434.CrossRef Tokuda, J., Fischer, G. S., Papademetris, X., Yaniv, Z., Ibanez, L., Cheng, P., et al. (2009). OpenIGTLink: an open network protocol for image-guided therapy environment. The International Journal of Medical Robotics and Computer Assisted Surgery, 5, 423–434.CrossRef
Zurück zum Zitat Voyvodic, J. T. (1999). Real-time fMRI paradigm control, physiology, and behavior combined with near real-time statistical analysis. NeuroImage, 10, 91–106.PubMedCrossRef Voyvodic, J. T. (1999). Real-time fMRI paradigm control, physiology, and behavior combined with near real-time statistical analysis. NeuroImage, 10, 91–106.PubMedCrossRef
Zurück zum Zitat Weiskopf, N., Mathiak, K., Bock, S. W., Scharnowski, F., Veit, R., Grodd, W., et al. (2004). Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). Biomedical Engineering, IEEE Transactions on, 51, 966–970.CrossRef Weiskopf, N., Mathiak, K., Bock, S. W., Scharnowski, F., Veit, R., Grodd, W., et al. (2004). Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). Biomedical Engineering, IEEE Transactions on, 51, 966–970.CrossRef
Zurück zum Zitat Weiskopf, N., Sitaram, R., Josephs, O., Veit, R., Scharnowski, F., Goebel, R., et al. (2007). Real-time functional magnetic resonance imaging: methods and applications. Magnetic Resonance Imaging, 25, 989–1003.PubMedCrossRef Weiskopf, N., Sitaram, R., Josephs, O., Veit, R., Scharnowski, F., Goebel, R., et al. (2007). Real-time functional magnetic resonance imaging: methods and applications. Magnetic Resonance Imaging, 25, 989–1003.PubMedCrossRef
Zurück zum Zitat Yoo, S.-S., & Jolesz, F. A. (2002). Functional MRI for neurofeedback: feasibility studyon a hand motor task. NeuroReport, 13, 1377–1381.PubMedCrossRef Yoo, S.-S., & Jolesz, F. A. (2002). Functional MRI for neurofeedback: feasibility studyon a hand motor task. NeuroReport, 13, 1377–1381.PubMedCrossRef
Zurück zum Zitat Yoo, S.-S., Fairneny, T., Chen, N.-K., Choo, S.-E., Panych, L. P., Park, H., et al. (2004). Brain-computer interface using fMRI: spatial navigation by thoughts. NeuroReport, 15, 1591–1595.PubMedCrossRef Yoo, S.-S., Fairneny, T., Chen, N.-K., Choo, S.-E., Panych, L. P., Park, H., et al. (2004). Brain-computer interface using fMRI: spatial navigation by thoughts. NeuroReport, 15, 1591–1595.PubMedCrossRef
Zurück zum Zitat Yoo, S.-S., O’Leary, H. M., Fairneny, T., Chen, N.-K., Panych, L. P., Park, H., et al. (2006). Increasing cortical activity in auditory areas through neurofeedback functional magnetic resonance imaging. NeuroReport, 17, 1273–1278.PubMedCrossRef Yoo, S.-S., O’Leary, H. M., Fairneny, T., Chen, N.-K., Panych, L. P., Park, H., et al. (2006). Increasing cortical activity in auditory areas through neurofeedback functional magnetic resonance imaging. NeuroReport, 17, 1273–1278.PubMedCrossRef
Zurück zum Zitat Zotev, V., Krueger, F., Phillips, R., Alvarez, R. P., Simmons, W. K., Bellgowan, P., et al. (2011). Self-regulation of amygdala activation using real-time fMRI neurofeedback. PLoS One, 6, e24522.PubMedCrossRef Zotev, V., Krueger, F., Phillips, R., Alvarez, R. P., Simmons, W. K., Bellgowan, P., et al. (2011). Self-regulation of amygdala activation using real-time fMRI neurofeedback. PLoS One, 6, e24522.PubMedCrossRef
Metadaten
Titel
A Graphics Processing Unit Accelerated Motion Correction Algorithm and Modular System for Real-time fMRI
verfasst von
Dustin Scheinost
Michelle Hampson
Maolin Qiu
Jitendra Bhawnani
R. Todd Constable
Xenophon Papademetris
Publikationsdatum
01.07.2013
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 3/2013
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-013-9176-3

Weitere Artikel der Ausgabe 3/2013

Neuroinformatics 3/2013 Zur Ausgabe