Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.10.2016 | Original Article | Ausgabe 7/2016

Neural Computing and Applications 7/2016

A heuristic supervised Euclidean data difference dimension reduction for KNN classifier and its application to visual place classification

Zeitschrift:
Neural Computing and Applications > Ausgabe 7/2016
Autoren:
Hesam Omranpour, Saeed Shiry Ghidary

Abstract

In this paper, we propose a novel supervised dimension reduction algorithm based on K-nearest neighbor (KNN) classifier. The proposed algorithm reduces the dimension of data in order to improve the accuracy of the KNN classification. This heuristic algorithm proposes independent dimensions which decrease Euclidean distance of a sample data and its K-nearest within-class neighbors and increase Euclidean distance of that sample and its M-nearest between-class neighbors. This algorithm is a linear dimension reduction algorithm which produces a mapping matrix for projecting data into low dimension. The dimension reduction step is followed by a KNN classifier. Therefore, it is applicable for high-dimensional multiclass classification. Experiments with artificial data such as Helix and Twin-peaks show ability of the algorithm for data visualization. This algorithm is compared with state-of-the-art algorithms in classification of eight different multiclass data sets from UCI collection. Simulation results have shown that the proposed algorithm outperforms the existing algorithms. Visual place classification is an important problem for intelligent mobile robots which not only deals with high-dimensional data but also has to solve a multiclass classification problem. A proper dimension reduction method is usually needed to decrease computation and memory complexity of algorithms in large environments. Therefore, our method is very well suited for this problem. We extract color histogram of omnidirectional camera images as primary features, reduce the features into a low-dimensional space and apply a KNN classifier. Results of experiments on five real data sets showed superiority of the proposed algorithm against others.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 7/2016

Neural Computing and Applications 7/2016 Zur Ausgabe

Premium Partner

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Best Practices für die Mitarbeiter-Partizipation in der Produktentwicklung

Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier  - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis.
Jetzt gratis downloaden!

Bildnachweise