Skip to main content
Erschienen in:

18.07.2024

A hierarchical hybrid intrusion detection model for industrial internet of things

verfasst von: Zhendong Wang, Xin Yang, Zhiyuan Zeng, Daojing He, Sammy Chan

Erschienen in: Peer-to-Peer Networking and Applications | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Der Artikel diskutiert die Schwachstellen von Geräten des Industrial Internet of Things (IIoT) und die Notwendigkeit effektiver Systeme zur Erkennung von Einbrüchen. Es führt ein hierarchisches hybrides Intrusionserkennungsmodell, ET-DCANET, ein, das einen extrem randomisierten Baumalgorithmus zur Merkmalsauswahl verwendet und erweiterte Windungen und doppelte Aufmerksamkeitsmechanismen integriert, um die Erkennungsgenauigkeit zu verbessern. Das Modell adressiert zudem Probleme des Klassenungleichgewichts durch eine neuartige Verlustfunktion, EQLv2. Der Artikel bietet eine umfassende Bewertung des Modells auf mehreren Datensätzen und hebt seine überlegene Leistung und sein Potenzial für reale Anwendungen im Bereich der Cybersicherheit hervor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Duan S et al (2022) Distributed artificial intelligence empowered by end-edge-cloud computing: a survey. IEEE Commun Surv Tutor 25(1):591–624CrossRef Duan S et al (2022) Distributed artificial intelligence empowered by end-edge-cloud computing: a survey. IEEE Commun Surv Tutor 25(1):591–624CrossRef
2.
Zurück zum Zitat Centenaro M et al (2021) A survey on technologies, standards and open challenges in satellite IoT. IEEE Commun Surv Tutor 23(3):1693–1720CrossRef Centenaro M et al (2021) A survey on technologies, standards and open challenges in satellite IoT. IEEE Commun Surv Tutor 23(3):1693–1720CrossRef
3.
Zurück zum Zitat Boyes H et al (2018) The industrial internet of things (IIoT): An analysis framework. Comput Ind 101:1–12CrossRef Boyes H et al (2018) The industrial internet of things (IIoT): An analysis framework. Comput Ind 101:1–12CrossRef
5.
Zurück zum Zitat Mirkovic J, Reiher P (2004) A taxonomy of DDoS attack and DDoS defense mechanisms. ACM SIGCOMM Comput Commun Rev 34(2):39–53CrossRef Mirkovic J, Reiher P (2004) A taxonomy of DDoS attack and DDoS defense mechanisms. ACM SIGCOMM Comput Commun Rev 34(2):39–53CrossRef
6.
Zurück zum Zitat Antonakakis M, April T, Bailey M, Bernhard M, Bursztein E, Cochran J, Durumeric Z, Halderman JA, Invernizzi L, Kallitsis M, Kumar D, Lever C, Ma Z, Mason J, Menscher D, Seaman C, Sullivan N, Thomas K, Zhou Y (2017) Understanding the mirai botnet. In Proceedings of the 26th USENIX Conference on Security Symposium (SEC'17). USENIX Association, USA 1093–1110 Antonakakis M, April T, Bailey M, Bernhard M, Bursztein E, Cochran J, Durumeric Z, Halderman JA, Invernizzi L, Kallitsis M, Kumar D, Lever C, Ma Z, Mason J, Menscher D, Seaman C, Sullivan N, Thomas K, Zhou Y (2017) Understanding the mirai botnet. In Proceedings of the 26th USENIX Conference on Security Symposium (SEC'17). USENIX Association, USA 1093–1110
8.
Zurück zum Zitat Liao H-J et al (2013) Intrusion detection system: A comprehensive review. J Netw Comput Appl 36(1):16–24CrossRef Liao H-J et al (2013) Intrusion detection system: A comprehensive review. J Netw Comput Appl 36(1):16–24CrossRef
9.
Zurück zum Zitat Kumar V, Sangwan OP (2012) Signature based intrusion detection system using SNORT. Int J Comput Appl Inf Technol 1(3):35–41 Kumar V, Sangwan OP (2012) Signature based intrusion detection system using SNORT. Int J Comput Appl Inf Technol 1(3):35–41
10.
12.
Zurück zum Zitat Hnamte V, Hussain J (2023) DCNNBiLSTM: An efficient hybrid deep learning-based intrusion detection system. Telematics Inform Rep 10:100053CrossRef Hnamte V, Hussain J (2023) DCNNBiLSTM: An efficient hybrid deep learning-based intrusion detection system. Telematics Inform Rep 10:100053CrossRef
13.
Zurück zum Zitat Belhadi A et al (2023) Group intrusion detection in the Internet of Things using a hybrid recurrent neural network. Clust Comput 26(2):1147–1158CrossRef Belhadi A et al (2023) Group intrusion detection in the Internet of Things using a hybrid recurrent neural network. Clust Comput 26(2):1147–1158CrossRef
14.
Zurück zum Zitat Gottwalt F, Chang E, Dillon T (2019) CorrCorr: A feature selection method for multivariate correlation network anomaly detection techniques. Comput Secur 83:234–245CrossRef Gottwalt F, Chang E, Dillon T (2019) CorrCorr: A feature selection method for multivariate correlation network anomaly detection techniques. Comput Secur 83:234–245CrossRef
15.
Zurück zum Zitat Yerong T, Sai S, Ke X, Zhe L (2014) Intrusion detection based on support vector machine using heuristic genetic algorithm. In 2014 Fourth International Conference on Communication Systems and Network Technologies, Bhopal, India, pp 681–684. https://doi.org/10.1109/CSNT.2014.143 Yerong T, Sai S, Ke X, Zhe L (2014) Intrusion detection based on support vector machine using heuristic genetic algorithm. In 2014 Fourth International Conference on Communication Systems and Network Technologies, Bhopal, India, pp 681–684. https://​doi.​org/​10.​1109/​CSNT.​2014.​143
16.
Zurück zum Zitat Yang J-H et al (2018) Introduction of lithography-compatible conducting polymer as flexible electrode for oxide-based charge-trap memory transistors on plastic poly (ethylene naphthalate) substrates. Solid-State Electron 150:35–40CrossRef Yang J-H et al (2018) Introduction of lithography-compatible conducting polymer as flexible electrode for oxide-based charge-trap memory transistors on plastic poly (ethylene naphthalate) substrates. Solid-State Electron 150:35–40CrossRef
18.
Zurück zum Zitat Farnaaz N, Jabbar M (2016) Random forest modeling for network intrusion detection system. Procedia Comput Sci 89:213–217CrossRef Farnaaz N, Jabbar M (2016) Random forest modeling for network intrusion detection system. Procedia Comput Sci 89:213–217CrossRef
19.
Zurück zum Zitat Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 43(1):3–31CrossRef Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 43(1):3–31CrossRef
20.
Zurück zum Zitat Jha J, Ragha L (2013) Intrusion detection system using support vector machine. Int J Appl Inf Syst (IJAIS) 3:25–30 Jha J, Ragha L (2013) Intrusion detection system using support vector machine. Int J Appl Inf Syst (IJAIS) 3:25–30
21.
Zurück zum Zitat Benaddi H, Ibrahimi K, Benslimane A (2018) Improving the intrusion detection system for NSL-KDD dataset based on PCA-fuzzy clustering-KNN. In 2018 6th International Conference on Wireless Networks and Mobile Communications (WINCOM), Marrakesh, Morocco, pp 1–6. https://doi.org/10.1109/WINCOM.2018.8629718 Benaddi H, Ibrahimi K, Benslimane A (2018) Improving the intrusion detection system for NSL-KDD dataset based on PCA-fuzzy clustering-KNN. In 2018 6th International Conference on Wireless Networks and Mobile Communications (WINCOM), Marrakesh, Morocco, pp 1–6. https://​doi.​org/​10.​1109/​WINCOM.​2018.​8629718
22.
Zurück zum Zitat Al-Yaseen WL, Othman ZA, Nazri MZA (2017) Multi-level hybrid support vector machine and extreme learning machine based on modified K-means for intrusion detection system. Expert Syst Appl 67:296–303CrossRef Al-Yaseen WL, Othman ZA, Nazri MZA (2017) Multi-level hybrid support vector machine and extreme learning machine based on modified K-means for intrusion detection system. Expert Syst Appl 67:296–303CrossRef
23.
Zurück zum Zitat Gao X et al (2019) An adaptive ensemble machine learning model for intrusion detection. IEEE Access 7:82512–82521CrossRef Gao X et al (2019) An adaptive ensemble machine learning model for intrusion detection. IEEE Access 7:82512–82521CrossRef
25.
Zurück zum Zitat Wang W et al (2017) HAST-IDS: Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection. IEEE Access 6:1792–1806CrossRef Wang W et al (2017) HAST-IDS: Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection. IEEE Access 6:1792–1806CrossRef
27.
Zurück zum Zitat Wang Z et al (2022) A lightweight approach for network intrusion detection in industrial cyber-physical systems based on knowledge distillation and deep metric learning. Expert Syst Appl 206:117671CrossRef Wang Z et al (2022) A lightweight approach for network intrusion detection in industrial cyber-physical systems based on knowledge distillation and deep metric learning. Expert Syst Appl 206:117671CrossRef
28.
29.
Zurück zum Zitat Panthong R, Srivihok A (2015) Wrapper feature subset selection for dimension reduction based on ensemble learning algorithm. Procedia Comput Sci 72:162–169CrossRef Panthong R, Srivihok A (2015) Wrapper feature subset selection for dimension reduction based on ensemble learning algorithm. Procedia Comput Sci 72:162–169CrossRef
30.
Zurück zum Zitat Wang Z et al (2024) A lightweight IoT intrusion detection model based on improved BERT-of-Theseus. Expert Syst Appl 238:122045CrossRef Wang Z et al (2024) A lightweight IoT intrusion detection model based on improved BERT-of-Theseus. Expert Syst Appl 238:122045CrossRef
31.
Zurück zum Zitat Kasongo SM, Sun Y (2020) A deep learning method with wrapper based feature extraction for wireless intrusion detection system. Comput Secur 92:101752CrossRef Kasongo SM, Sun Y (2020) A deep learning method with wrapper based feature extraction for wireless intrusion detection system. Comput Secur 92:101752CrossRef
32.
Zurück zum Zitat Kasongo SM, Sun Y (2019) A deep learning method with filter based feature engineering for wireless intrusion detection system. IEEE Access 7:38597–38607CrossRef Kasongo SM, Sun Y (2019) A deep learning method with filter based feature engineering for wireless intrusion detection system. IEEE Access 7:38597–38607CrossRef
33.
Zurück zum Zitat Al-Hawawreh M, Sitnikova E, Aboutorab N (2021) X-IIoTID: A connectivity-agnostic and device-agnostic intrusion data set for industrial Internet of Things. IEEE Internet Things J 9(5):3962–3977CrossRef Al-Hawawreh M, Sitnikova E, Aboutorab N (2021) X-IIoTID: A connectivity-agnostic and device-agnostic intrusion data set for industrial Internet of Things. IEEE Internet Things J 9(5):3962–3977CrossRef
34.
Zurück zum Zitat Hnamte V, Hussain J (2023) Dependable intrusion detection system using deep convolutional neural network: A novel framework and performance evaluation approach. Telematics Inform Rep 11:100077CrossRef Hnamte V, Hussain J (2023) Dependable intrusion detection system using deep convolutional neural network: A novel framework and performance evaluation approach. Telematics Inform Rep 11:100077CrossRef
35.
Zurück zum Zitat Takahashi N, Yuki M (2020) Densely connected multidilated convolutional networks for dense prediction tasks. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 993–1002 Takahashi N, Yuki M (2020) Densely connected multidilated convolutional networks for dense prediction tasks. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 993–1002
36.
Zurück zum Zitat Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37 (ICML'15) pp 448–456. JMLR.org Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37 (ICML'15) pp 448–456. JMLR.​org
37.
Zurück zum Zitat Woo S, Park J, Lee JY, Kweon IS (2018) CBAM: convolutional block attention module. In Computer Vision – ECCV 2018: 15th European Conference, Munich, Germany, September 8–14, 2018, Proceedings, Part VII. Springer-Verlag, Berlin, Heidelberg, 3–19. https://doi.org/10.1007/978-3-030-01234-2_1 Woo S, Park J, Lee JY, Kweon IS (2018) CBAM: convolutional block attention module. In Computer Vision – ECCV 2018: 15th European Conference, Munich, Germany, September 8–14, 2018, Proceedings, Part VII. Springer-Verlag, Berlin, Heidelberg, 3–19. https://​doi.​org/​10.​1007/​978-3-030-01234-2_​1
38.
39.
40.
Zurück zum Zitat Thaseen IS, Kumar CA (2017) Intrusion detection model using fusion of chi-square feature selection and multi class SVM. J King Saud Univ-Comput Inf Sci 29(4):462–472 Thaseen IS, Kumar CA (2017) Intrusion detection model using fusion of chi-square feature selection and multi class SVM. J King Saud Univ-Comput Inf Sci 29(4):462–472
41.
Zurück zum Zitat Sinha J, Manollas M (2020) Efficient deep CNN-BiLSTM model for network intrusion detection. In Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition (AIPR '20). Association for Computing Machinery, New York, NY, USA, pp 223–231. https://doi.org/10.1145/3430199.3430224 Sinha J, Manollas M (2020) Efficient deep CNN-BiLSTM model for network intrusion detection. In Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition (AIPR '20). Association for Computing Machinery, New York, NY, USA, pp 223–231. https://​doi.​org/​10.​1145/​3430199.​3430224
42.
Zurück zum Zitat Halbouni A et al (2022) CNN-LSTM: hybrid deep neural network for network intrusion detection system. IEEE Access 10:99837–99849CrossRef Halbouni A et al (2022) CNN-LSTM: hybrid deep neural network for network intrusion detection system. IEEE Access 10:99837–99849CrossRef
43.
Zurück zum Zitat Du J et al (2023) Nids-cnnlstm: Network intrusion detection classification model based on deep learning. IEEE Access 11:24808–24821CrossRef Du J et al (2023) Nids-cnnlstm: Network intrusion detection classification model based on deep learning. IEEE Access 11:24808–24821CrossRef
44.
Zurück zum Zitat Mishra AK, Paliwal S (2023) Mitigating cyber threats through integration of feature selection and stacking ensemble learning: the LGBM and random forest intrusion detection perspective. Clust Comput 26(4):2339–2350CrossRef Mishra AK, Paliwal S (2023) Mitigating cyber threats through integration of feature selection and stacking ensemble learning: the LGBM and random forest intrusion detection perspective. Clust Comput 26(4):2339–2350CrossRef
45.
Zurück zum Zitat Ahmad I et al (2018) Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection. IEEE Access 6:33789–33795CrossRef Ahmad I et al (2018) Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection. IEEE Access 6:33789–33795CrossRef
46.
Zurück zum Zitat Lilhore UK et al (2023) HIDM: Hybrid intrusion detection model for industry 4.0 networks using an optimized CNN-LSTM with transfer learning. Sensors 23(18):7856CrossRef Lilhore UK et al (2023) HIDM: Hybrid intrusion detection model for industry 4.0 networks using an optimized CNN-LSTM with transfer learning. Sensors 23(18):7856CrossRef
47.
Zurück zum Zitat Kanna PR, Santhi P (2022) Hybrid intrusion detection using mapreduce based black widow optimized convolutional long short-term memory neural networks. Expert Syst Appl 194:116545CrossRef Kanna PR, Santhi P (2022) Hybrid intrusion detection using mapreduce based black widow optimized convolutional long short-term memory neural networks. Expert Syst Appl 194:116545CrossRef
48.
Zurück zum Zitat Lu Y et al (2024) Intrusion detection for Industrial Internet of Things based on deep learning. Neurocomputing 564:126886CrossRef Lu Y et al (2024) Intrusion detection for Industrial Internet of Things based on deep learning. Neurocomputing 564:126886CrossRef
50.
Zurück zum Zitat Al-Hawawreh M, Sitnikova E, Aboutorab N (2021) Asynchronous peer-to-peer federated capability-based targeted ransomware detection model for industrial iot. IEEE Access 9:148738–148755CrossRef Al-Hawawreh M, Sitnikova E, Aboutorab N (2021) Asynchronous peer-to-peer federated capability-based targeted ransomware detection model for industrial iot. IEEE Access 9:148738–148755CrossRef
51.
Zurück zum Zitat Altunay HC, Albayrak Z (2023) A hybrid CNN+ LSTMbased intrusion detection system for industrial IoT networks. Eng Sci Technol Int J 38:101322 Altunay HC, Albayrak Z (2023) A hybrid CNN+ LSTMbased intrusion detection system for industrial IoT networks. Eng Sci Technol Int J 38:101322
Metadaten
Titel
A hierarchical hybrid intrusion detection model for industrial internet of things
verfasst von
Zhendong Wang
Xin Yang
Zhiyuan Zeng
Daojing He
Sammy Chan
Publikationsdatum
18.07.2024
Verlag
Springer US
Erschienen in
Peer-to-Peer Networking and Applications / Ausgabe 5/2024
Print ISSN: 1936-6442
Elektronische ISSN: 1936-6450
DOI
https://doi.org/10.1007/s12083-024-01749-0