Skip to main content
Erschienen in: Autonomous Robots 2/2021

05.01.2021 | Original Research

A hierarchical representation of behaviour supporting open ended development and progressive learning for artificial agents

verfasst von: François Suro, Jacques Ferber, Tiberiu Stratulat, Fabien Michel

Erschienen in: Autonomous Robots | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One of the challenging aspects of open ended or lifelong agent development is that the final behaviour for which an agent is trained at a given moment can be an element for the future creation of one, or even several, behaviours of greater complexity, whose purpose cannot be anticipated. In this paper, we present modular influence network design (MIND), an artificial agent control architecture suited to open ended and cumulative learning. The MIND architecture encapsulates sub behaviours into modules and combines them into a hierarchy reflecting the modular and hierarchical nature of complex tasks. Compared to similar research, the main original aspect of MIND is the multi layered hierarchy using a generic control signal, the influence, to obtain an efficient global behaviour. This article shows the ability of MIND to learn a curriculum of independent didactic tasks of increasing complexity covering different aspects of a desired behaviour. In so doing we demonstrate the contributions of MIND to open-ended development: encapsulation into modules allows for the preservation and re-usability of all the skills acquired during the curriculum and their focused retraining, the modular structure serves the evolving topology by easing the coordination of new sensors, actuators and heterogeneous learning structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Objects can be naturally split into parts and sub-parts, complex features and simple features (Kruger et al. 2013).
 
6
OpenCV computer vision library: https://​opencv.​org/​.
 
Literatur
Zurück zum Zitat Arkin, R. C., & Balch, T. (1997). Aura: Principles and practice in review. Journal of Experimental & Theoretical Artificial Intelligence, 9(2–3), 175–189.CrossRef Arkin, R. C., & Balch, T. (1997). Aura: Principles and practice in review. Journal of Experimental & Theoretical Artificial Intelligence, 9(2–3), 175–189.CrossRef
Zurück zum Zitat Barto, A. G., Singh, S., & Chentanez, N. (2004). Intrinsically motivated learning of hierarchical collections of skills. In Proceedings of the 3rd International Conference on Development and Learning (pp. 112–19). Barto, A. G., Singh, S., & Chentanez, N. (2004). Intrinsically motivated learning of hierarchical collections of skills. In Proceedings of the 3rd International Conference on Development and Learning (pp. 112–19).
Zurück zum Zitat Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning. In Proceedings of the 26th Annual International Conference on Machine Learning (pp. 41–48). ACM. Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning. In Proceedings of the 26th Annual International Conference on Machine Learning (pp. 41–48). ACM.
Zurück zum Zitat Blaes, S., Pogančić, M. V., Zhu, J., & Martius, G. (2019). Control what you can: Intrinsically motivated task-planning agent. In Advances in Neural Information Processing Systems (pp. 12520–12531). Blaes, S., Pogančić, M. V., Zhu, J., & Martius, G. (2019). Control what you can: Intrinsically motivated task-planning agent. In Advances in Neural Information Processing Systems (pp. 12520–12531).
Zurück zum Zitat Braitenberg, V. (1986). Vehicles: Experiments in synthetic psychology. Cambridge: MIT press. Braitenberg, V. (1986). Vehicles: Experiments in synthetic psychology. Cambridge: MIT press.
Zurück zum Zitat Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, 2(1), 14–23.CrossRef Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, 2(1), 14–23.CrossRef
Zurück zum Zitat Connor, J. T., Martin, R. D., & Atlas, L. E. (1994). Recurrent neural networks and robust time series prediction. IEEE Transactions on Neural Networks, 5(2), 240–254.CrossRef Connor, J. T., Martin, R. D., & Atlas, L. E. (1994). Recurrent neural networks and robust time series prediction. IEEE Transactions on Neural Networks, 5(2), 240–254.CrossRef
Zurück zum Zitat De Jong, K. A. (1992). Are genetic algorithms function optimizers? PPSN, 2, 3–14. De Jong, K. A. (1992). Are genetic algorithms function optimizers? PPSN, 2, 3–14.
Zurück zum Zitat Devin, C., Gupta, A., Darrell, T., Abbeel, P., & Levine, S. (2017). Learning modular neural network policies for multi-task and multi-robot transfer. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 2169–2176). IEEE. Devin, C., Gupta, A., Darrell, T., Abbeel, P., & Levine, S. (2017). Learning modular neural network policies for multi-task and multi-robot transfer. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 2169–2176). IEEE.
Zurück zum Zitat Dorigo, M., & Colombetti, M. (1994). Robot shaping: Developing autonomous agents through learning. Artificial intelligence, 71(2), 321–370.CrossRef Dorigo, M., & Colombetti, M. (1994). Robot shaping: Developing autonomous agents through learning. Artificial intelligence, 71(2), 321–370.CrossRef
Zurück zum Zitat Dorigo, M., & Colombetti, M. (1998). Robot shaping: An experiment in behavior engineering. Cambridge: MIT press. Dorigo, M., & Colombetti, M. (1998). Robot shaping: An experiment in behavior engineering. Cambridge: MIT press.
Zurück zum Zitat Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1), 1–47.CrossRef Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1), 1–47.CrossRef
Zurück zum Zitat Foglino, F., Christakou, C. C., & Leonetti, M. (2019). An optimization framework for task sequencing in curriculum learning. In Joint IEEE 9th International Conference ICDL-EpiRob (pp. 207–214). IEEE. Foglino, F., Christakou, C. C., & Leonetti, M. (2019). An optimization framework for task sequencing in curriculum learning. In Joint IEEE 9th International Conference ICDL-EpiRob (pp. 207–214). IEEE.
Zurück zum Zitat Forestier, S., Mollard, Y., & Oudeyer, P.-Y. (2017). Intrinsically motivated goal exploration processes with automatic curriculum learning. arXiv preprint arXiv:1708.02190. Forestier, S., Mollard, Y., & Oudeyer, P.-Y. (2017). Intrinsically motivated goal exploration processes with automatic curriculum learning. arXiv preprint arXiv:​1708.​02190.
Zurück zum Zitat Gen, M., & Lin, L. (2007). Genetic algorithms. In Wiley Encyclopedia of Computer Science and Engineering (pp. 1–15). Gen, M., & Lin, L. (2007). Genetic algorithms. In Wiley Encyclopedia of Computer Science and Engineering (pp. 1–15).
Zurück zum Zitat Gülçehre, Ç., Moczulski, M., Visin, F., & Bengio, Y. (2016). Mollifying networks. CoRR, abs/1608.04980. Gülçehre, Ç., Moczulski, M., Visin, F., & Bengio, Y. (2016). Mollifying networks. CoRR, abs/1608.04980.
Zurück zum Zitat Heess, N., Wayne, G., Tassa, Y., Lillicrap, T. P., Riedmiller, M. A., & Silver, D. (2016). Learning and transfer of modulated locomotor controllers. CoRR, abs/1610.05182. Heess, N., Wayne, G., Tassa, Y., Lillicrap, T. P., Riedmiller, M. A., & Silver, D. (2016). Learning and transfer of modulated locomotor controllers. CoRR, abs/1610.05182.
Zurück zum Zitat Hester, T., & Stone, P. (2017). Intrinsically motivated model learning for developing curious robots. Artificial Intelligence, 247, 170–186.MathSciNetCrossRef Hester, T., & Stone, P. (2017). Intrinsically motivated model learning for developing curious robots. Artificial Intelligence, 247, 170–186.MathSciNetCrossRef
Zurück zum Zitat Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. InAdvances in neural information processing systems (pp. 1097–1105). Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. InAdvances in neural information processing systems (pp. 1097–1105).
Zurück zum Zitat Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., et al. (2013). Deep hierarchies in the primate visual cortex: What can we learn for computer vision? IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1847–1871.CrossRef Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., et al. (2013). Deep hierarchies in the primate visual cortex: What can we learn for computer vision? IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1847–1871.CrossRef
Zurück zum Zitat Larsen, T., & Hansen, S. T. (2005). Evolving composite robot behaviour-a modular architecture. In Proceedings of the Fifth International Workshop on Robot Motion and Control, 2005. RoMoCo’05., pages 271–276. IEEE. Larsen, T., & Hansen, S. T. (2005). Evolving composite robot behaviour-a modular architecture. In Proceedings of the Fifth International Workshop on Robot Motion and Control, 2005. RoMoCo’05., pages 271–276. IEEE.
Zurück zum Zitat Lessin, D., Fussell, D., & Miikkulainen, R. (2013). Open-ended behavioral complexity for evolved virtual creatures. In Proceedings of the 15th annual conference on Genetic and evolutionary computation (pp. 335–342). Lessin, D., Fussell, D., & Miikkulainen, R. (2013). Open-ended behavioral complexity for evolved virtual creatures. In Proceedings of the 15th annual conference on Genetic and evolutionary computation (pp. 335–342).
Zurück zum Zitat Lessin, D., Fussell, D., Miikkulainen, R., & Risi, S. (2015). Increasing behavioral complexity for evolved virtual creatures with the esp method. arXiv preprint arXiv:1510.07957. Lessin, D., Fussell, D., Miikkulainen, R., & Risi, S. (2015). Increasing behavioral complexity for evolved virtual creatures with the esp method. arXiv preprint arXiv:​1510.​07957.
Zurück zum Zitat Lopes, M., & Oudeyer, P.-Y. (2012). The strategic student approach for life-long exploration and learning. In 2012 IEEE international conference on development and learning and epigenetic robotics (ICDL) (pp. 1–8). IEEE. Lopes, M., & Oudeyer, P.-Y. (2012). The strategic student approach for life-long exploration and learning. In 2012 IEEE international conference on development and learning and epigenetic robotics (ICDL) (pp. 1–8). IEEE.
Zurück zum Zitat Lukoševičius, M., & Jaeger, H. (2009). Reservoir computing approaches to recurrent neural network training. Computer Science Review, 3(3), 127–149.CrossRef Lukoševičius, M., & Jaeger, H. (2009). Reservoir computing approaches to recurrent neural network training. Computer Science Review, 3(3), 127–149.CrossRef
Zurück zum Zitat Lungarella, M., Metta, G., Pfeifer, R., & Sandini, G. (2003). Developmental robotics: A survey. Connection Science, 15(4), 151–190.CrossRef Lungarella, M., Metta, G., Pfeifer, R., & Sandini, G. (2003). Developmental robotics: A survey. Connection Science, 15(4), 151–190.CrossRef
Zurück zum Zitat Narvekar, S., Sinapov, J., Leonetti, M., & Stone, P. (2016). Source task creation for curriculum learning. In: Proceedings of the 2016 international conference on autonomous agents & multiagent systems (pp. 566–574). International Foundation for Autonomous Agents and Multiagent Systems. Narvekar, S., Sinapov, J., Leonetti, M., & Stone, P. (2016). Source task creation for curriculum learning. In: Proceedings of the 2016 international conference on autonomous agents & multiagent systems (pp. 566–574). International Foundation for Autonomous Agents and Multiagent Systems.
Zurück zum Zitat Niël, R., & Wiering, M. A. (2018). Hierarchical reinforcement learning for playing a dynamic dungeon crawler game. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1159–1166). IEEE. Niël, R., & Wiering, M. A. (2018). Hierarchical reinforcement learning for playing a dynamic dungeon crawler game. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1159–1166). IEEE.
Zurück zum Zitat Oudeyer, P.-Y. (2012). Developmental robotics. In Encyclopedia of the sciences of learning (pp 969–972). Springer. Oudeyer, P.-Y. (2012). Developmental robotics. In Encyclopedia of the sciences of learning (pp 969–972). Springer.
Zurück zum Zitat Oudeyer, P.-Y., & Kaplan, F. (2007). What is intrinsic motivation? a typology of computational approaches. Frontiers in Neurorobotics, 1, 6.CrossRef Oudeyer, P.-Y., & Kaplan, F. (2007). What is intrinsic motivation? a typology of computational approaches. Frontiers in Neurorobotics, 1, 6.CrossRef
Zurück zum Zitat Piaget, J. (1954). The construction of reality in the child. New York: Basic Books.CrossRef Piaget, J. (1954). The construction of reality in the child. New York: Basic Books.CrossRef
Zurück zum Zitat Piaget, J., & Duckworth, E. (1970). Genetic epistemology. American Behavioral Scientist, 13(3), 459–480.CrossRef Piaget, J., & Duckworth, E. (1970). Genetic epistemology. American Behavioral Scientist, 13(3), 459–480.CrossRef
Zurück zum Zitat Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. In ACM SIGGRAPH computer graphics (Vol. 21, pp. 25–34). ACM. Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. In ACM SIGGRAPH computer graphics (Vol. 21, pp. 25–34). ACM.
Zurück zum Zitat Rudolph, G. (1994). Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks, 5(1), 96–101.CrossRef Rudolph, G. (1994). Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks, 5(1), 96–101.CrossRef
Zurück zum Zitat Russell, S., & Norvig, P. (2009). Artificial Intelligence: A Modern Approach (3rd ed.). Upper Saddle River: Prentice Hall Press.MATH Russell, S., & Norvig, P. (2009). Artificial Intelligence: A Modern Approach (3rd ed.). Upper Saddle River: Prentice Hall Press.MATH
Zurück zum Zitat Santucci, V. G., Baldassarre, G., & Cartoni, E. (2019). Autonomous reinforcement learning of multiple interrelated tasks. In 2019 Joint IEEE 9th international conference on development and learning and epigenetic robotics (ICDL-EpiRob) (pp. 221–227). IEEE. Santucci, V. G., Baldassarre, G., & Cartoni, E. (2019). Autonomous reinforcement learning of multiple interrelated tasks. In 2019 Joint IEEE 9th international conference on development and learning and epigenetic robotics (ICDL-EpiRob) (pp. 221–227). IEEE.
Zurück zum Zitat Santucci, V. G., Baldassarre, G., & Mirolli, M. (2016). Grail: A goal-discovering robotic architecture for intrinsically-motivated learning. IEEE Transactions on Cognitive and Developmental Systems, 8(3), 214–231.CrossRef Santucci, V. G., Baldassarre, G., & Mirolli, M. (2016). Grail: A goal-discovering robotic architecture for intrinsically-motivated learning. IEEE Transactions on Cognitive and Developmental Systems, 8(3), 214–231.CrossRef
Zurück zum Zitat Schrum, J., & Miikkulainen, R. (2015). Discovering multimodal behavior in MS PAC-man through evolution of modular neural networks. IEEE Transactions on Computational Intelligence and AI in Games, 8(1), 67–81.CrossRef Schrum, J., & Miikkulainen, R. (2015). Discovering multimodal behavior in MS PAC-man through evolution of modular neural networks. IEEE Transactions on Computational Intelligence and AI in Games, 8(1), 67–81.CrossRef
Zurück zum Zitat Simonin, O., & Ferber, J. (2000). Modeling self satisfaction and altruism to handle action selection and reactive cooperation. In Proceedings of the 6th international conference on the simulation of adaptive behavior (Vol. 2, pp. 314–323). Simonin, O., & Ferber, J. (2000). Modeling self satisfaction and altruism to handle action selection and reactive cooperation. In Proceedings of the 6th international conference on the simulation of adaptive behavior (Vol. 2, pp. 314–323).
Zurück zum Zitat Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. Evolutionary Computation, 10(2), 99–127.CrossRef Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. Evolutionary Computation, 10(2), 99–127.CrossRef
Zurück zum Zitat Stone, P., & Veloso, M. (2000). Layered learning. In European conference on machine learning (pp. 369–381). Springer. Stone, P., & Veloso, M. (2000). Layered learning. In European conference on machine learning (pp. 369–381). Springer.
Zurück zum Zitat Whiteson, S., Kohl, N., Miikkulainen, R., & Stone, P. (2003). Evolving keepaway soccer players through task decomposition. In Genetic and Evolutionary Computation Conference (pp. 356–368). Springer. Whiteson, S., Kohl, N., Miikkulainen, R., & Stone, P. (2003). Evolving keepaway soccer players through task decomposition. In Genetic and Evolutionary Computation Conference (pp. 356–368). Springer.
Metadaten
Titel
A hierarchical representation of behaviour supporting open ended development and progressive learning for artificial agents
verfasst von
François Suro
Jacques Ferber
Tiberiu Stratulat
Fabien Michel
Publikationsdatum
05.01.2021
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 2/2021
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-020-09960-7

Weitere Artikel der Ausgabe 2/2021

Autonomous Robots 2/2021 Zur Ausgabe

Neuer Inhalt