Skip to main content
Erschienen in: Journal of Computational Electronics 2/2015

01.06.2015

A high performance gate engineered charge plasma based tunnel field effect transistor

verfasst von: Faisal Bashir, Sajad A. Loan, M. Rafat, Abdul Rehman M. Alamoud, Shuja A. Abbasi

Erschienen in: Journal of Computational Electronics | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose a new gate engineered dopingless tunnel field effect transistor (GEDL-TFET). GEDL-TFET has double gate and uses metals of different work functions to realize source and drain regions in undoped silicon; a charge plasma concept. The novelty of the device is the use of dual material top gate and thus two gates appear at the top, main gate 1 and a tunneling gate (TG). The use of TG has enhanced the performance of the device significantly and it acts as a performance booster. The simulation study has shown that the \(\hbox {I}_{\mathrm{ON}}\) and \(\hbox {I}_{\mathrm{ON}}/\hbox {I}_{\mathrm{OFF}}\) ratio in the proposed GEDL-TFET device have increased by \(\sim \)53 times and \(\sim \)68 times in comparison to a double gate doped TFET (D-TFET) and a double gate dopingless TFET (DL-TFET) devices respectively. Further, a significant improvement in average subthreshold slope of \(\sim \)57% has been achieved in the proposed GEDL-TFET device in comparison to the other two devices. Besides, the cutoff frequency \((f_{\mathrm{T}})\) of GEDL-TFET (90.77 GHZ) has increased by \(\sim \)12 times in comparison to D-FET (\(\sim \)7.77 GHZ) and DL-TFET (\(\sim \)7.77 GHZ) devices respectively. The transient analyses have shown that a reduction of 47 and 44.11 % in switching ON-delay and 21.1 and 16.23 % in switching OFF delay is obtained in the GEDL-TFET device based inverting amplifier in comparison to DL-TFET and D-TFET based inverters amplifiers respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dennard, R.H., Gaensslen, F.H., Yu, H.-N., Rideout, V.L., Bassous, E., Leblanc, A.R.: Design of ion-implanted MOSFETs with very small physical dimensions. IEEE J. Solid-State Circuits SSC-9(5), 256–268 (1974) Dennard, R.H., Gaensslen, F.H., Yu, H.-N., Rideout, V.L., Bassous, E., Leblanc, A.R.: Design of ion-implanted MOSFETs with very small physical dimensions. IEEE J. Solid-State Circuits SSC-9(5), 256–268 (1974)
2.
Zurück zum Zitat Baccarani, G., Wordeman, M.R., Dennard, R.: Generalized scaling theory and its application to a 1/4 micrometer MOSFET design. IEEE Trans. Electron Devices ED-31(4), 452–462 (1984) Baccarani, G., Wordeman, M.R., Dennard, R.: Generalized scaling theory and its application to a 1/4 micrometer MOSFET design. IEEE Trans. Electron Devices ED-31(4), 452–462 (1984)
3.
Zurück zum Zitat Ellinger, F., Claus, M., Schroeter, M., Carta, C.: Review of advanced and beyond CMOS FET technologies for radio frequency circuit design. In: Proceedings of SBMO/IEEE MTT-S IMOC, pp. 347–351 (2011) Ellinger, F., Claus, M., Schroeter, M., Carta, C.: Review of advanced and beyond CMOS FET technologies for radio frequency circuit design. In: Proceedings of SBMO/IEEE MTT-S IMOC, pp. 347–351 (2011)
4.
Zurück zum Zitat Skotnicki, T.: Heading for decananometer CMOS—Is navigation among icebergs still a viable strategy. In: Proceedings of ESSDERC, Gif-sur-Yvette pp. 19–33 (2000) Skotnicki, T.: Heading for decananometer CMOS—Is navigation among icebergs still a viable strategy. In: Proceedings of ESSDERC, Gif-sur-Yvette pp. 19–33 (2000)
5.
Zurück zum Zitat Loan, S.A., Qureshi, S., Iyer, S.S.K.: A novel partial ground plane based MOSFET on selective buried oxide: 2D simulation study. IEEE Trans. Electron Devices 57, 671–680 (2010)CrossRef Loan, S.A., Qureshi, S., Iyer, S.S.K.: A novel partial ground plane based MOSFET on selective buried oxide: 2D simulation study. IEEE Trans. Electron Devices 57, 671–680 (2010)CrossRef
6.
Zurück zum Zitat Nagavarapu, V., Jhaveri, R.: Woo, Jason C.S.: The tunnel source (PNPN) n-MOSFET: a novel high performance transistor. IEEE Trans. Electron Devices 4(55), 1013–1019 (2008)CrossRef Nagavarapu, V., Jhaveri, R.: Woo, Jason C.S.: The tunnel source (PNPN) n-MOSFET: a novel high performance transistor. IEEE Trans. Electron Devices 4(55), 1013–1019 (2008)CrossRef
7.
Zurück zum Zitat Ionescu, A.M., Riel, H.: Tunnel field effect transistors as energy efficient electronic switches. Nature 479, 329–337 (2011)CrossRef Ionescu, A.M., Riel, H.: Tunnel field effect transistors as energy efficient electronic switches. Nature 479, 329–337 (2011)CrossRef
8.
Zurück zum Zitat Kim, D., et al.: Heterojunction tunneling transistor (HETT)-based extremely low power applications. Proceedings of IEEE/ACM design international symposium on low power electron, New York, pp. 219–224 (2009) Kim, D., et al.: Heterojunction tunneling transistor (HETT)-based extremely low power applications. Proceedings of IEEE/ACM design international symposium on low power electron, New York, pp. 219–224 (2009)
9.
Zurück zum Zitat Hisamoto, D., Lee, W.-C., Kedzierski, J., Takeuchi, H., Asano, K., Kuo, C., Anderson, E., King, T.-J., Bokor, J., Hu, C.: FinFET—a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Devices 47(12), 2320–2325 (2000)CrossRef Hisamoto, D., Lee, W.-C., Kedzierski, J., Takeuchi, H., Asano, K., Kuo, C., Anderson, E., King, T.-J., Bokor, J., Hu, C.: FinFET—a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Devices 47(12), 2320–2325 (2000)CrossRef
10.
Zurück zum Zitat Kimura, S., Noda, H., Hisamoto, D., Takeda, E.: A 0.1 \(\mu \)m-gate elevated source and drain MOSFET fabricated by phase-shifted lithography. In: IEDM technical digest, pp. 950–952 (1991) Kimura, S., Noda, H., Hisamoto, D., Takeda, E.: A 0.1 \(\mu \)m-gate elevated source and drain MOSFET fabricated by phase-shifted lithography. In: IEDM technical digest, pp. 950–952 (1991)
11.
Zurück zum Zitat Mizuno, T., et al.: High velocity electron injection MOSFETs for ballistic transistors using SiGe/strained-Si heterojunction source structures. In: VLSI symposium technology digest, pp. 202–203 (2004) Mizuno, T., et al.: High velocity electron injection MOSFETs for ballistic transistors using SiGe/strained-Si heterojunction source structures. In: VLSI symposium technology digest, pp. 202–203 (2004)
12.
Zurück zum Zitat Nayak, D.K., Woo, J.C.S., Park, J.S., Wang, K., McWilliams, K.P.: Enhancement-mode quantum-well Ge\(x\)SiGe1-\(x\) PMOS. IEEE Electron Device Lett. 12(4), 154–156 (1991)CrossRef Nayak, D.K., Woo, J.C.S., Park, J.S., Wang, K., McWilliams, K.P.: Enhancement-mode quantum-well Ge\(x\)SiGe1-\(x\) PMOS. IEEE Electron Device Lett. 12(4), 154–156 (1991)CrossRef
13.
Zurück zum Zitat Kim, Y., et al.: Conventional n-channel MOSFET devices using single layer HfO\(_2\) and ZrO\(_2 as\) high \(k\) gate dielectrics with polysilicon gate electrode. In: IEDM technical digest, pp. 20.2.1-20.2.4 (2001) Kim, Y., et al.: Conventional n-channel MOSFET devices using single layer HfO\(_2\) and ZrO\(_2 as\) high \(k\) gate dielectrics with polysilicon gate electrode. In: IEDM technical digest, pp. 20.2.1-20.2.4 (2001)
14.
Zurück zum Zitat Gopalakrishnan, K., Griffin, P.B., Plummer, J. D.: I-MOS: a novel semiconductor device with subthreshold slope lower than \(kT/q\). In: Technical digest—IEEE international electron devices meet, pp. 289–292 (2002) Gopalakrishnan, K., Griffin, P.B., Plummer, J. D.: I-MOS: a novel semiconductor device with subthreshold slope lower than \(kT/q\). In: Technical digest—IEEE international electron devices meet, pp. 289–292 (2002)
15.
Zurück zum Zitat Salahuddin, S., Datta, S.: Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008)CrossRef Salahuddin, S., Datta, S.: Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008)CrossRef
16.
Zurück zum Zitat Nathanson, H., Newell, W., Wickstro, R., Davis, J.: Resonant gate transistor. IEEE Trans. Electron Devices ED-14(3), 117–133 (1967) Nathanson, H., Newell, W., Wickstro, R., Davis, J.: Resonant gate transistor. IEEE Trans. Electron Devices ED-14(3), 117–133 (1967)
17.
Zurück zum Zitat Rusu, A., Salvatore, G. A., Jimenez, D., Ionescu, A. M.: Metal-ferroelectric-metal-oxide-semiconductor field effect transistor with sub-60mV/decade subthreshold swing and internal voltage amplification. In: IEEE international electron devices meeting, pp. 16.3.1-16.3.4 (2010) Rusu, A., Salvatore, G. A., Jimenez, D., Ionescu, A. M.: Metal-ferroelectric-metal-oxide-semiconductor field effect transistor with sub-60mV/decade subthreshold swing and internal voltage amplification. In: IEEE international electron devices meeting, pp. 16.3.1-16.3.4 (2010)
18.
Zurück zum Zitat Abele, N., et al.: Suspended-gate MOSFET: bringing new MEMS functionality into solid-state MOS transistor. Technical digest IEEE international electron devices meeting, pp. 479–481 (2005) Abele, N., et al.: Suspended-gate MOSFET: bringing new MEMS functionality into solid-state MOS transistor. Technical digest IEEE international electron devices meeting, pp. 479–481 (2005)
19.
Zurück zum Zitat Chen, F., et al.: Integrated circuit design with NEM relays. In: IEEE/ACM international conference on computer-aided design, San Jose, pp. 750–757 (2008) Chen, F., et al.: Integrated circuit design with NEM relays. In: IEEE/ACM international conference on computer-aided design, San Jose, pp. 750–757 (2008)
20.
Zurück zum Zitat Quinn, J., Kawamoto, G., McCombe, B.: Subband spectroscopy by surface channel tunneling. Surf. Sci. 73, 190–196 (1978)CrossRef Quinn, J., Kawamoto, G., McCombe, B.: Subband spectroscopy by surface channel tunneling. Surf. Sci. 73, 190–196 (1978)CrossRef
21.
Zurück zum Zitat Banerjee, S., Richardson, W., Coleman, J., Chatterjee, A.: A new three-terminal tunnel device. IEEE Electron Device Lett. 8, 347–349 (1987)CrossRef Banerjee, S., Richardson, W., Coleman, J., Chatterjee, A.: A new three-terminal tunnel device. IEEE Electron Device Lett. 8, 347–349 (1987)CrossRef
22.
Zurück zum Zitat Takeda, E., Matsuoka, H., Igura, Y., Asai, S.: A band to band tunneling MOS device B2T-MOSFET. In: Technical digest–international electron devices meeting, pp. 402–405 (1988) Takeda, E., Matsuoka, H., Igura, Y., Asai, S.: A band to band tunneling MOS device B2T-MOSFET. In: Technical digest–international electron devices meeting, pp. 402–405 (1988)
23.
Zurück zum Zitat Baba, T.: Proposal for surface tunnel transistors. Jpn. J. Appl. Phys. 31, L455–L457 (1992)CrossRef Baba, T.: Proposal for surface tunnel transistors. Jpn. J. Appl. Phys. 31, L455–L457 (1992)CrossRef
24.
Zurück zum Zitat Seabaugh, A.C., Zhang, Q.: Low voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095–2110 (2010)CrossRef Seabaugh, A.C., Zhang, Q.: Low voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095–2110 (2010)CrossRef
25.
Zurück zum Zitat Chiang, M.-H., Lin, J.-N., Kim, K., Chuang, C.-T.: Random dopant fluctuation in limited-width FinFET technologies. IEEE Trans. Electron Devices 54(8), 2055–2060 (2007)CrossRef Chiang, M.-H., Lin, J.-N., Kim, K., Chuang, C.-T.: Random dopant fluctuation in limited-width FinFET technologies. IEEE Trans. Electron Devices 54(8), 2055–2060 (2007)CrossRef
26.
Zurück zum Zitat Damrongplasit, N., Shin, C., Kim, S.H., Vega, R.A., Liu, T.J.K.: Study of random dopant fluctuation effects in germanium-source tunnel FETs. IEEE Trans. Electron Devices 58(10), 3541–3548 (2011)CrossRef Damrongplasit, N., Shin, C., Kim, S.H., Vega, R.A., Liu, T.J.K.: Study of random dopant fluctuation effects in germanium-source tunnel FETs. IEEE Trans. Electron Devices 58(10), 3541–3548 (2011)CrossRef
27.
Zurück zum Zitat Damrongplasit, N., Kim, S.H., Liu, T.J.K.: Study of random dopant fluctuation induced variability in the raised-ge-source TFET. IEEE Electron Device Lett. 34(2), 184–186 (2013)CrossRef Damrongplasit, N., Kim, S.H., Liu, T.J.K.: Study of random dopant fluctuation induced variability in the raised-ge-source TFET. IEEE Electron Device Lett. 34(2), 184–186 (2013)CrossRef
28.
Zurück zum Zitat Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)CrossRef Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)CrossRef
29.
Zurück zum Zitat Rajasekharan, B., Hueting, R.J.E., Salm, C., et al.: Fabrication and characterization of the charge-plasma diode. IEEE Electron Device Lett. 31(6), 528–530 (2010)CrossRef Rajasekharan, B., Hueting, R.J.E., Salm, C., et al.: Fabrication and characterization of the charge-plasma diode. IEEE Electron Device Lett. 31(6), 528–530 (2010)CrossRef
30.
Zurück zum Zitat Hueting, R.J.E., Rajasekharan, B., Salm, C., et al.: Charge plasma P-N diode. IEEE Electron Device Lett. 29(12), 1367–1368 (2008)CrossRef Hueting, R.J.E., Rajasekharan, B., Salm, C., et al.: Charge plasma P-N diode. IEEE Electron Device Lett. 29(12), 1367–1368 (2008)CrossRef
31.
Zurück zum Zitat Kumar, M.J., Nadda, K.: Bipolar charge-plasma transistor: a novel three terminal device. IEEE Trans. Electron Devices 59(4), 962–967 (2012)CrossRef Kumar, M.J., Nadda, K.: Bipolar charge-plasma transistor: a novel three terminal device. IEEE Trans. Electron Devices 59(4), 962–967 (2012)CrossRef
32.
Zurück zum Zitat Loan, S.A., Bashir, F., Rafat, M., Alamoud, A.R., Abbasi, S.A.: A high performance charge plasma based lateral bipolar transistor on selective buried oxide. Semicond. Sci. Technol. 29, 015011 (2014)CrossRef Loan, S.A., Bashir, F., Rafat, M., Alamoud, A.R., Abbasi, S.A.: A high performance charge plasma based lateral bipolar transistor on selective buried oxide. Semicond. Sci. Technol. 29, 015011 (2014)CrossRef
33.
Zurück zum Zitat Loan, S.A., Bashir, F., Rafat, M., Alamoud, A.R., Abbasi, S.A.: A high performance charge plasma PN-Schottky collector transistor on silicon-on-insulator. Semicond. Sci. Technol. 29, 095001 (2014)CrossRef Loan, S.A., Bashir, F., Rafat, M., Alamoud, A.R., Abbasi, S.A.: A high performance charge plasma PN-Schottky collector transistor on silicon-on-insulator. Semicond. Sci. Technol. 29, 095001 (2014)CrossRef
34.
Zurück zum Zitat Boucart, K., Ionescu, A.M.: Double gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRef Boucart, K., Ionescu, A.M.: Double gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRef
35.
Zurück zum Zitat Saurabh, S., Kumar, M.J.: Investigation of the novel attributes of a dual material gate nanoscale tunnel field effect transistor. IEEE Trans. Electron Devices 58(2), 404–410 (2011)CrossRef Saurabh, S., Kumar, M.J.: Investigation of the novel attributes of a dual material gate nanoscale tunnel field effect transistor. IEEE Trans. Electron Devices 58(2), 404–410 (2011)CrossRef
36.
Zurück zum Zitat Washio, K., et al.: A 0.2 m 180 GHz f 6.7 ps ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high speed digital applications. IEEE Trans. Electron Devices 49, 271–278 (2002)CrossRef Washio, K., et al.: A 0.2 m 180 GHz f 6.7 ps ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high speed digital applications. IEEE Trans. Electron Devices 49, 271–278 (2002)CrossRef
37.
Zurück zum Zitat ATLAS Device Simulation Software: Silvaco Int., Santa Clara (2012) ATLAS Device Simulation Software: Silvaco Int., Santa Clara (2012)
38.
Zurück zum Zitat Solomon, Paul M., et al.: Universal tunneling behavior in technologically relevant P/N junction diodes. J. Appl. Phys. 95(10), 5800–5812 (2004) Solomon, Paul M., et al.: Universal tunneling behavior in technologically relevant P/N junction diodes. J. Appl. Phys. 95(10), 5800–5812 (2004)
39.
Zurück zum Zitat Mallik, A., Chattopadhyay, A.: Impact of a spacer-drain overlap on the characteristics of a silicon tunnel field-effect transistor based on vertical tunneling. IEEE Trans. Electron Devices 60, 935–943 (2013)CrossRef Mallik, A., Chattopadhyay, A.: Impact of a spacer-drain overlap on the characteristics of a silicon tunnel field-effect transistor based on vertical tunneling. IEEE Trans. Electron Devices 60, 935–943 (2013)CrossRef
40.
Zurück zum Zitat Asra, R., Murali, K.V.R.M.: Rao, VRamgopal: A binary tunnel field effect transistor with a steep sub-threshold swing and increased ON current. Jpn. J. Appl. Phys. 49, 120203 (2010)CrossRef Asra, R., Murali, K.V.R.M.: Rao, VRamgopal: A binary tunnel field effect transistor with a steep sub-threshold swing and increased ON current. Jpn. J. Appl. Phys. 49, 120203 (2010)CrossRef
41.
Zurück zum Zitat Mookerjea, S., Krishnan, R., Datta, S., Narayanan, V.: On enhanced Miller capacitance effect in interband tunnel transistors. IEEE Electron Device Lett. 30(10), 1102–1104 (2009)CrossRef Mookerjea, S., Krishnan, R., Datta, S., Narayanan, V.: On enhanced Miller capacitance effect in interband tunnel transistors. IEEE Electron Device Lett. 30(10), 1102–1104 (2009)CrossRef
42.
Zurück zum Zitat Knoch, J., Appenzeller, J.: A novel concept for fi eld-effect transistors—the tunneling carbon nanotube FET. In: Proceedings of 63rd DRC 1, 153–156 (2005) Knoch, J., Appenzeller, J.: A novel concept for fi eld-effect transistors—the tunneling carbon nanotube FET. In: Proceedings of 63rd DRC 1, 153–156 (2005)
43.
Zurück zum Zitat Guillaumot, B., Garros, X., Lime, F., Oshima, K., Tavel, B., Chrob-oczek, J.A., Masson, P., Truche, R., Papon, A.M., Martin, F., Dam-lencourt, J.F., Maitrejean, S., Rivoire, M., Leroux, C., Cristoloveanu, S., Ghibaudo, G., Autran, J.L., Skotnicki, T., Deleonibus, S.: 75 nm damascene metal gate and high-k integration for advanced CMOS devices. In: IEDM technical digest, pp. 355–358 (2002) Guillaumot, B., Garros, X., Lime, F., Oshima, K., Tavel, B., Chrob-oczek, J.A., Masson, P., Truche, R., Papon, A.M., Martin, F., Dam-lencourt, J.F., Maitrejean, S., Rivoire, M., Leroux, C., Cristoloveanu, S., Ghibaudo, G., Autran, J.L., Skotnicki, T., Deleonibus, S.: 75 nm damascene metal gate and high-k integration for advanced CMOS devices. In: IEDM technical digest, pp. 355–358 (2002)
44.
Zurück zum Zitat Wang, H., Chang, S., Hu, Y., He, H., He, J., Huang, Q., He, F., Wang, G.: A novel barrier controlled tunnel FET. IEEE Electron Device Lett. 35, 798 (2014)CrossRef Wang, H., Chang, S., Hu, Y., He, H., He, J., Huang, Q., He, F., Wang, G.: A novel barrier controlled tunnel FET. IEEE Electron Device Lett. 35, 798 (2014)CrossRef
45.
Zurück zum Zitat Zhuge, J., Anne, S.: Digital-circuit analysis of short-gate tunnel FETs for low-voltage applications. Semicond. Sci. Technol. 26, 085001 (2011)CrossRef Zhuge, J., Anne, S.: Digital-circuit analysis of short-gate tunnel FETs for low-voltage applications. Semicond. Sci. Technol. 26, 085001 (2011)CrossRef
Metadaten
Titel
A high performance gate engineered charge plasma based tunnel field effect transistor
verfasst von
Faisal Bashir
Sajad A. Loan
M. Rafat
Abdul Rehman M. Alamoud
Shuja A. Abbasi
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 2/2015
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-015-0665-5

Weitere Artikel der Ausgabe 2/2015

Journal of Computational Electronics 2/2015 Zur Ausgabe

Neuer Inhalt