Skip to main content

20.07.2024

A Human Word Association Based Model for Topic Detection in Social Networks

verfasst von: Mehrdad Ranjbar-Khadivi, Shahin Akbarpour, Mohammad-Reza Feizi-Derakhshi, Babak Anari

Erschienen in: Annals of Data Science

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the widespread use of social networks, detecting the topics discussed on these platforms has become a significant challenge. Current approaches primarily rely on frequent pattern mining or semantic relations, often neglecting the structure of the language. Language structural methods aim to discover the relationships between words and how humans understand them. Therefore, this paper introduces a topic detection framework for social networks based on the concept of imitating the mental ability of word association. This framework employs the Human Word Association method and includes a specially designed extraction algorithm. The performance of this method is evaluated using the FA-CUP dataset, a benchmark in the field of topic detection. The results indicate that the proposed method significantly improves topic detection compared to other methods, as evidenced by Topic-recall and the keyword F1 measure. Additionally, to assess the applicability and generalizability of the proposed method, a dataset of Telegram posts in the Persian language is used. The results demonstrate that this method outperforms other topic detection methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
Literatur
14.
Zurück zum Zitat Liu M, Qu J (2012) Mining high utility itemsets without candidate generation. In: Proceedings of the 21st ACM international conference on information and knowledge management—CIKM ’12, p 55. ACM Press, New York, New York, USA . https://doi.org/10.1145/2396761.2396773 Liu M, Qu J (2012) Mining high utility itemsets without candidate generation. In: Proceedings of the 21st ACM international conference on information and knowledge management—CIKM ’12, p 55. ACM Press, New York, New York, USA . https://​doi.​org/​10.​1145/​2396761.​2396773
18.
Zurück zum Zitat Petrović S, Osborne M, Lavrenko V (2010) Streaming first story detection with application to Twitter. In: Kaplan R, Burstein J, Harper M, Penn G (eds) Human language technologies: the 2010 annual conference of the North American chapter of the association for computational linguistics, pp 181–189. Association for Computational Linguistics, Los Angeles, California. https://aclanthology.org/N10-1021 Petrović S, Osborne M, Lavrenko V (2010) Streaming first story detection with application to Twitter. In: Kaplan R, Burstein J, Harper M, Penn G (eds) Human language technologies: the 2010 annual conference of the North American chapter of the association for computational linguistics, pp 181–189. Association for Computational Linguistics, Los Angeles, California. https://​aclanthology.​org/​N10-1021
19.
Zurück zum Zitat Allan J, Lavrenko V, Malin D, Swan R (2000) Detections, bounds, and timelines: Umass and tdt-3. In: Proceedings of topic detection and tracking workshop, pp 167–174 Allan J, Lavrenko V, Malin D, Swan R (2000) Detections, bounds, and timelines: Umass and tdt-3. In: Proceedings of topic detection and tracking workshop, pp 167–174
20.
22.
Zurück zum Zitat Blei D, Ng A, Jordan M (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022 Blei D, Ng A, Jordan M (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022
24.
Zurück zum Zitat Petkos G, Papadopoulos S, Aiello L, Skraba R, Kompatsiaris Y (2014) A soft frequent pattern mining approach for textual topic detection. In: Proceedings of the 4th international conference on web intelligence, mining and semantics (WIMS14)—WIMS ’14, pp 1–10. ACM Press, New York, New York, USA. https://doi.org/10.1145/2611040.2611068 Petkos G, Papadopoulos S, Aiello L, Skraba R, Kompatsiaris Y (2014) A soft frequent pattern mining approach for textual topic detection. In: Proceedings of the 4th international conference on web intelligence, mining and semantics (WIMS14)—WIMS ’14, pp 1–10. ACM Press, New York, New York, USA. https://​doi.​org/​10.​1145/​2611040.​2611068
27.
Zurück zum Zitat Nur’aini K, Najahaty I, Hidayati L, Murfi H, Nurrohmah S (2015) Combination of singular value decomposition and k-means clustering methods for topic detection on twitter. In: 2015 International conference on advanced computer science and information systems (ICACSIS), pp 123–128. https://doi.org/10.1109/ICACSIS.2015.7415168 Nur’aini K, Najahaty I, Hidayati L, Murfi H, Nurrohmah S (2015) Combination of singular value decomposition and k-means clustering methods for topic detection on twitter. In: 2015 International conference on advanced computer science and information systems (ICACSIS), pp 123–128. https://​doi.​org/​10.​1109/​ICACSIS.​2015.​7415168
28.
Zurück zum Zitat Li C, Sun A, Datta A (2012) Twevent: segment-based event detection from tweets. In: Proceedings of the 21st ACM international conference on information and knowledge management. In: CIKM ’12, pp 155–164. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2396761.2396785 Li C, Sun A, Datta A (2012) Twevent: segment-based event detection from tweets. In: Proceedings of the 21st ACM international conference on information and knowledge management. In: CIKM ’12, pp 155–164. Association for Computing Machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​2396761.​2396785
32.
Zurück zum Zitat Steyvers M, Shiffrin RM, Nelson DL (2004) Word association spaces for predicting semantic similarity effects in episodic memory. In: Healy AF (ed) Experimental cognitive psychology and its applications. American Psychological Association, pp 237–249. https://doi.org/10.1037/10895-018CrossRef Steyvers M, Shiffrin RM, Nelson DL (2004) Word association spaces for predicting semantic similarity effects in episodic memory. In: Healy AF (ed) Experimental cognitive psychology and its applications. American Psychological Association, pp 237–249. https://​doi.​org/​10.​1037/​10895-018CrossRef
36.
Zurück zum Zitat VasfiSisi N, Feizi Derakhshi MR (2013) Text classification with machine learning algorithms. J Basic Appl Sci Res 3(1):31–35 VasfiSisi N, Feizi Derakhshi MR (2013) Text classification with machine learning algorithms. J Basic Appl Sci Res 3(1):31–35
38.
Zurück zum Zitat Bojanowski P, Grave E, Joulin A, Mikolov T (2016) Enriching word vectors with subword information. arXiv preprint arXiv:1607.04606 Bojanowski P, Grave E, Joulin A, Mikolov T (2016) Enriching word vectors with subword information. arXiv preprint arXiv:​1607.​04606
40.
Zurück zum Zitat Olson D, Shi Y (2007) Introduction to business data mining Olson D, Shi Y (2007) Introduction to business data mining
Metadaten
Titel
A Human Word Association Based Model for Topic Detection in Social Networks
verfasst von
Mehrdad Ranjbar-Khadivi
Shahin Akbarpour
Mohammad-Reza Feizi-Derakhshi
Babak Anari
Publikationsdatum
20.07.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Annals of Data Science
Print ISSN: 2198-5804
Elektronische ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-024-00561-0