Skip to main content
Erschienen in: Neural Computing and Applications 2/2016

01.02.2016 | Original Article

A hybrid approach to artificial bee colony algorithm

verfasst von: Lianbo Ma, Yunlong Zhu, Dingyi Zhang, Ben Niu

Erschienen in: Neural Computing and Applications | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we put forward a hybrid approach based on the life cycle for the artificial bee colony algorithm to generate dynamical varying population as well as ensure appropriate balance between exploration and exploitation. The bee life-cycle model is firstly constructed, which means that each individual can reproduce or die dynamically throughout the searching process and population size can dynamically vary during execution. With the comprehensive learning, the bees incorporate the information of global best solution into the search equation for exploration, while the Powell’s search enables the bees deeply to exploit around the promising area. Finally, we instantiate a hybrid artificial bee colony (HABC) optimizer based on the proposed model, namely HABC. Comprehensive test experiments based on the well-known CEC 2014 benchmarks have been carried out to compare the performance of HABC against other bio-mimetic algorithms. Our numerical results prove the effectiveness of the proposed hybridization scheme and demonstrate the performance superiority of the proposed algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks, vol 4, pp 1942–1948 Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks, vol 4, pp 1942–1948
2.
Zurück zum Zitat Dorigo M, Gambardella LM (1997) Ant colony system: a cooperating learning approach to the travelling salesman problem. IEEE Trans Evol Comput 1(1):53–66CrossRef Dorigo M, Gambardella LM (1997) Ant colony system: a cooperating learning approach to the travelling salesman problem. IEEE Trans Evol Comput 1(1):53–66CrossRef
3.
Zurück zum Zitat Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22:52–67CrossRef Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22:52–67CrossRef
4.
Zurück zum Zitat Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73CrossRef Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73CrossRef
5.
Zurück zum Zitat Sumathi S, Hamsapriya T, Surekha P (2008) Evolutionary intelligence: an introduction to theory and applications with Matlab. Springer, Berlin Sumathi S, Hamsapriya T, Surekha P (2008) Evolutionary intelligence: an introduction to theory and applications with Matlab. Springer, Berlin
6.
Zurück zum Zitat Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evol Comput 9(2):159–195CrossRef Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evol Comput 9(2):159–195CrossRef
7.
Zurück zum Zitat Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department
8.
Zurück zum Zitat Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471MATHMathSciNetCrossRef Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471MATHMathSciNetCrossRef
9.
Zurück zum Zitat Karaboga D, Basturk B (2007) Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: Lecture notes in computer science, vol 4529, pp 789–798 Karaboga D, Basturk B (2007) Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: Lecture notes in computer science, vol 4529, pp 789–798
10.
Zurück zum Zitat Pan QK, Tasgetiren MF, Suganthan PN, Chua TJ (2011) A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Inf Sci 181:2455–2468MathSciNetCrossRef Pan QK, Tasgetiren MF, Suganthan PN, Chua TJ (2011) A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Inf Sci 181:2455–2468MathSciNetCrossRef
11.
Zurück zum Zitat Karaboga D, Akay B, Ozturk C (2007) Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks. In: Modeling decisions for artificial intelligence, Springer, Berlin, pp 318–329 Karaboga D, Akay B, Ozturk C (2007) Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks. In: Modeling decisions for artificial intelligence, Springer, Berlin, pp 318–329
13.
Zurück zum Zitat Biswas S, Kundu S, Das S, Vasilakos AV (2013) Information sharing in bee colony for detecting multiple niches in non-stationary environments. In: Christian B (ed) Proceeding of the fifteenth annual conference companion on genetic and evolutionary computation conference companion (GECCO 13 Companion), Amsterdam, The Netherlands. ACM, NY, USA, pp 1–2 Biswas S, Kundu S, Das S, Vasilakos AV (2013) Information sharing in bee colony for detecting multiple niches in non-stationary environments. In: Christian B (ed) Proceeding of the fifteenth annual conference companion on genetic and evolutionary computation conference companion (GECCO 13 Companion), Amsterdam, The Netherlands. ACM, NY, USA, pp 1–2
14.
Zurück zum Zitat Akbari R, Hedayatzadeh R, Ziarati K, Hassanizadeh B (2012) A multi-objective artificial bee colony algorithm. Swarm Evol Comput 2:39–52CrossRef Akbari R, Hedayatzadeh R, Ziarati K, Hassanizadeh B (2012) A multi-objective artificial bee colony algorithm. Swarm Evol Comput 2:39–52CrossRef
15.
Zurück zum Zitat Zhu GP, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217(7):3166–3173MATHMathSciNetCrossRef Zhu GP, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217(7):3166–3173MATHMathSciNetCrossRef
16.
Zurück zum Zitat Banharnsakun A, Achalakul T, Sirinaovakul B (2011) The best-so-far selection in artificial bee colony algorithm. Appl Soft Comput 11(2):2888–2901CrossRef Banharnsakun A, Achalakul T, Sirinaovakul B (2011) The best-so-far selection in artificial bee colony algorithm. Appl Soft Comput 11(2):2888–2901CrossRef
17.
Zurück zum Zitat Gao W, Liu S, Huang L (2013) A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Trans Cybern 43(3):1011–1024CrossRef Gao W, Liu S, Huang L (2013) A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Trans Cybern 43(3):1011–1024CrossRef
18.
Zurück zum Zitat Gao W, Liu S, Huang L (2013) A novel artificial bee colony algorithm with Powell’s method. Appl Soft Comput 13(9):3763–3775CrossRef Gao W, Liu S, Huang L (2013) A novel artificial bee colony algorithm with Powell’s method. Appl Soft Comput 13(9):3763–3775CrossRef
19.
Zurück zum Zitat Basturk B, Karaboga D (2012) A modified artificial bee colony algorithm for real-parameter optimization. Inf Sci 192:120–142CrossRef Basturk B, Karaboga D (2012) A modified artificial bee colony algorithm for real-parameter optimization. Inf Sci 192:120–142CrossRef
20.
Zurück zum Zitat Kang F, Li JJ, Ma ZY (2011) Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions. Inf Sci 181:3508–3531MATHMathSciNetCrossRef Kang F, Li JJ, Ma ZY (2011) Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions. Inf Sci 181:3508–3531MATHMathSciNetCrossRef
21.
Zurück zum Zitat Alatas B (2010) Chaotic bee colony algorithms for global numerical optimization. Expert Syst Appl 37:5682–5687CrossRef Alatas B (2010) Chaotic bee colony algorithms for global numerical optimization. Expert Syst Appl 37:5682–5687CrossRef
22.
Zurück zum Zitat Coelho LS, Alotto P (2011) Gaussian artificial bee colony algorithm approach applied to Loneys solenoid benchmark problem. IEEE Trans Magn 47(5):1326–1329CrossRef Coelho LS, Alotto P (2011) Gaussian artificial bee colony algorithm approach applied to Loneys solenoid benchmark problem. IEEE Trans Magn 47(5):1326–1329CrossRef
23.
Zurück zum Zitat Schmickl T, Crailsheim K (2007) HoPoMo: a model of honeybee intracolonial population dynamics and resource management. Ecol Model 204:219–245CrossRef Schmickl T, Crailsheim K (2007) HoPoMo: a model of honeybee intracolonial population dynamics and resource management. Ecol Model 204:219–245CrossRef
24.
Zurück zum Zitat Beshers SN, Huang ZY, Oonoa Y, Robinson GE (2001) Social inhibition and the regulation of temporal polyethism in honey bees. J Theor Biol 213:461–479CrossRef Beshers SN, Huang ZY, Oonoa Y, Robinson GE (2001) Social inhibition and the regulation of temporal polyethism in honey bees. J Theor Biol 213:461–479CrossRef
25.
Zurück zum Zitat Huang ZY, Robinson GE (1996) Regulation of honey bee division of labor by colony age demography. Behav Ecol Sociobiol 39:147–158CrossRef Huang ZY, Robinson GE (1996) Regulation of honey bee division of labor by colony age demography. Behav Ecol Sociobiol 39:147–158CrossRef
26.
Zurück zum Zitat Khoury DS, Myerscough MR, Barron AB (2011) A quantitative model of honeybee colony population dynamics. PLoS One 6:e18491CrossRef Khoury DS, Myerscough MR, Barron AB (2011) A quantitative model of honeybee colony population dynamics. PLoS One 6:e18491CrossRef
27.
Zurück zum Zitat Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, Princeton, NJ Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, Princeton, NJ
28.
Zurück zum Zitat Huang ZY, Robinson GE (1992) Honeybee colony integration: worker–worker interactions mediate hormonally regulated plasticity in division of labor. Proc Natl Acad Sci USA 89:11726–11729CrossRef Huang ZY, Robinson GE (1992) Honeybee colony integration: worker–worker interactions mediate hormonally regulated plasticity in division of labor. Proc Natl Acad Sci USA 89:11726–11729CrossRef
29.
Zurück zum Zitat Jeanne RL (1986) The evolution of the organization of work in social insects. Monit Zool Ital 20:119–133 Jeanne RL (1986) The evolution of the organization of work in social insects. Monit Zool Ital 20:119–133
30.
Zurück zum Zitat Seeley TD (1982) The adaptive significance of the age polyethism schedule in honeybee colonies. Behav Ecol Sociobiol 11:287–293CrossRef Seeley TD (1982) The adaptive significance of the age polyethism schedule in honeybee colonies. Behav Ecol Sociobiol 11:287–293CrossRef
31.
Zurück zum Zitat Cox MD, Myerscough MR (2003) A flexible model of foraging by a honey bee colony: the effects of individual behaviour on foraging success. J Theor Biol 223:179–197MathSciNetCrossRef Cox MD, Myerscough MR (2003) A flexible model of foraging by a honey bee colony: the effects of individual behaviour on foraging success. J Theor Biol 223:179–197MathSciNetCrossRef
32.
Zurück zum Zitat DeGrandi-Hoffman G, Roth SA, Loper GL et al (1989) BEEPOP: a honeybee population dynamics simulation model. Ecol Model 45:133–150CrossRef DeGrandi-Hoffman G, Roth SA, Loper GL et al (1989) BEEPOP: a honeybee population dynamics simulation model. Ecol Model 45:133–150CrossRef
33.
Zurück zum Zitat Gheorghe M, Holcombe M, Kefalas P (2001) Computational models of collective foraging. BioSystems 61:133–141CrossRef Gheorghe M, Holcombe M, Kefalas P (2001) Computational models of collective foraging. BioSystems 61:133–141CrossRef
34.
Zurück zum Zitat Niu B, Zhu YL, He XX et al (2008) A lifecycle model for simulating bacterial evolution. Neurocomputing 72(1):142–148CrossRef Niu B, Zhu YL, He XX et al (2008) A lifecycle model for simulating bacterial evolution. Neurocomputing 72(1):142–148CrossRef
35.
Zurück zum Zitat Krink T, Løvbjerg M (2002) The lifecycle model: combining particle swarm optimisation, genetic algorithms and hillclimbers. In: Parallel problem solving from nature—PPSN VII. Springer, Berlin, pp 621–630 Krink T, Løvbjerg M (2002) The lifecycle model: combining particle swarm optimisation, genetic algorithms and hillclimbers. In: Parallel problem solving from nature—PPSN VII. Springer, Berlin, pp 621–630
36.
Zurück zum Zitat Powell MJD (1977) Restart procedures for the conjugate gradient method. Math Program 12:241–254MATHCrossRef Powell MJD (1977) Restart procedures for the conjugate gradient method. Math Program 12:241–254MATHCrossRef
37.
Zurück zum Zitat Ma L, Hu K, Zhu Y et al (2014) Discrete and continuous optimization based on hierarchical artificial bee colony optimizer. J Appl Math 2014:1–20 Ma L, Hu K, Zhu Y et al (2014) Discrete and continuous optimization based on hierarchical artificial bee colony optimizer. J Appl Math 2014:1–20
38.
Zurück zum Zitat Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248MATHCrossRef Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248MATHCrossRef
39.
Zurück zum Zitat Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295CrossRef Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295CrossRef
40.
Zurück zum Zitat Salomon R (1996) Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms. Biosystems 39:263–278CrossRef Salomon R (1996) Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms. Biosystems 39:263–278CrossRef
41.
Zurück zum Zitat Yan X, Zhu Y, Zhang H et al (2012) An adaptive bacterial foraging optimization algorithm with lifecycle and social learning. Discrete Dyn Nat Soc 2012:1–10 Yan X, Zhu Y, Zhang H et al (2012) An adaptive bacterial foraging optimization algorithm with lifecycle and social learning. Discrete Dyn Nat Soc 2012:1–10
42.
Zurück zum Zitat Auger A, Hansen N (2005) A restart CMA evolution strategy with increasing population size. In: Evolutionary computation, 2005. The 2005 IEEE congress on IEEE, vol 2, pp 1769–1776 Auger A, Hansen N (2005) A restart CMA evolution strategy with increasing population size. In: Evolutionary computation, 2005. The 2005 IEEE congress on IEEE, vol 2, pp 1769–1776
44.
Zurück zum Zitat Potter MA, de Jong KA (2000) Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol Comput 8:1–29 Potter MA, de Jong KA (2000) Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol Comput 8:1–29
45.
Zurück zum Zitat Derrac J, García S, Molina D et al (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18CrossRef Derrac J, García S, Molina D et al (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18CrossRef
Metadaten
Titel
A hybrid approach to artificial bee colony algorithm
verfasst von
Lianbo Ma
Yunlong Zhu
Dingyi Zhang
Ben Niu
Publikationsdatum
01.02.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 2/2016
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-015-1851-x

Weitere Artikel der Ausgabe 2/2016

Neural Computing and Applications 2/2016 Zur Ausgabe

Extreme Learning Machine and Applications

An optimal method for data clustering

Extreme Learning Machine and Applications

Self-adaptive extreme learning machine