Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

23.11.2020 | Regular Paper | Ausgabe 3/2021

Knowledge and Information Systems 3/2021

A hybrid neural network approach to combine textual information and rating information for item recommendation

Zeitschrift:
Knowledge and Information Systems > Ausgabe 3/2021
Autoren:
Donghua Liu, Jing Li, Bo Du, Jun Chang, Rong Gao, Yujia Wu
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Collaborative filtering (CF) is a common method used by many recommender systems. Traditional CF algorithms exploit users’ ratings as the sole information source to learn user preferences. However, ratings usually sparse cause a serious impact on the recommendation results. Most existing CF algorithms use ratings and textual information to alleviate the sparsity of data and then utilize matrix factorization to achieve the latent feature interactions for rating prediction. Nevertheless, the following shortcomings remain in these studies: (1) The word orders and surrounding words of the textual information are ignored. (2) The nonlinearity of feature interactions is seldom exploited. Therefore, we propose a novel hybrid neural network to combine textual information and rating (NCTR) information for item recommendation. The proposed NCTR model is built upon a hybrid neural network framework with fine-grained modeling of latent representation and nonlinearity feature interactions for rating prediction. Specifically, convolution neural network is applied to extract effectively contextual features from textual information. Meanwhile, a fusion layer is exploited to combine features, and the multilayer perceptions are used to model the nonlinear interactions between the merged item latent features and user latent features. Experimental results over five real-world datasets show that NCTR significantly outperforms several state-of-the-art recommendation methods. Source codes are available in https://​github.​com/​luojia527/​NCTR_​master.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2021

Knowledge and Information Systems 3/2021 Zur Ausgabe

Premium Partner