Skip to main content
Erschienen in: Journal of Materials Science 4/2019

26.10.2018 | Electronic materials

A hybrid thermal diode based on phase transition materials

verfasst von: J. A. Leon-Gil, J. J. Martinez-Flores, J. Alvarez-Quintana

Erschienen in: Journal of Materials Science | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ideally, a thermal rectifier is a device where heat current preferentially flows in one direction, just as the electrical diode works for electrical currents. Herein, we introduce a design of a thermal diode based on the combination of first- and second-order phase transition materials. Validation is realized by a proof-of-concept device consisting of a hybrid composite of neopentylglycol (NPG) and gadolinium (Gd) as the first- and second-order phase transition materials, respectively. Device manipulates the heat via a combined effect of molecular transformations in NPG as well as deactivation of magnons in Gd at the transition and Curie temperatures, respectively. Thermal measurements of the hybrid thermal diode demonstrate a thermal rectification factor of 1.45, which is higher than the value obtained for the reference device based only on NPG. We interpret such enhancement in the thermal rectification factor due to the presence of an asymmetry temperature jump along the heat transfer axis of the device as a consequence of the impact of both phase transitions. Results are corroborated via finite element analysis of the diode by using ANSYS. Hence, such combination of effects has been proved as successful strategy to develop enhanced-performance thermal rectifiers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tritt TM, Subramanian MA (2006) Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull 31:188–198CrossRef Tritt TM, Subramanian MA (2006) Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull 31:188–198CrossRef
2.
Zurück zum Zitat Pop E (2010) Energy dissipation and transport in nanoscale devices. Nano Res 3:147–169CrossRef Pop E (2010) Energy dissipation and transport in nanoscale devices. Nano Res 3:147–169CrossRef
3.
Zurück zum Zitat Li B, Wang L, Casati G (2006) Negative differential thermal resistance and thermal transistor. Appl Phys Lett 88:143501CrossRef Li B, Wang L, Casati G (2006) Negative differential thermal resistance and thermal transistor. Appl Phys Lett 88:143501CrossRef
4.
Zurück zum Zitat Wang L, Li B (2007) Thermal logic gates: computation with phonons. Phys Rev Lett 99:177208CrossRef Wang L, Li B (2007) Thermal logic gates: computation with phonons. Phys Rev Lett 99:177208CrossRef
5.
6.
Zurück zum Zitat Majumdar A, Reddy P (2004) Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces. Appl Phys Lett 84:4768–4770CrossRef Majumdar A, Reddy P (2004) Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces. Appl Phys Lett 84:4768–4770CrossRef
7.
Zurück zum Zitat Somers R II, Fletcher L, Flack RD (1987) An explanation of thermal rectification. In: 22nd aerospace sciences meeting, p 398 Somers R II, Fletcher L, Flack RD (1987) An explanation of thermal rectification. In: 22nd aerospace sciences meeting, p 398
8.
Zurück zum Zitat Barber JR, Wright K (1967) The thermal distortion due to a uniform circular heat source on the surface of a semi-infinite solid. Int J Mech Sci 9:811–815CrossRef Barber JR, Wright K (1967) The thermal distortion due to a uniform circular heat source on the surface of a semi-infinite solid. Int J Mech Sci 9:811–815CrossRef
9.
Zurück zum Zitat Peyrard M (2006) The design of a thermal rectifier. EPL (Europhys Lett) 76:49CrossRef Peyrard M (2006) The design of a thermal rectifier. EPL (Europhys Lett) 76:49CrossRef
10.
Zurück zum Zitat Kobayashi W, Teraoka Y, Terasaki I (2009) An oxide thermal rectifier. Appl Phys Lett 95:171905CrossRef Kobayashi W, Teraoka Y, Terasaki I (2009) An oxide thermal rectifier. Appl Phys Lett 95:171905CrossRef
11.
Zurück zum Zitat Dames C (2009) Solid-state thermal rectification with existing bulk materials. J Heat Transf 131:61301–61307CrossRef Dames C (2009) Solid-state thermal rectification with existing bulk materials. J Heat Transf 131:61301–61307CrossRef
12.
Zurück zum Zitat Li B, Lan J, Wang L (2005) Interface thermal resistance between dissimilar anharmonic lattices. Phys Rev Lett 95:104302CrossRef Li B, Lan J, Wang L (2005) Interface thermal resistance between dissimilar anharmonic lattices. Phys Rev Lett 95:104302CrossRef
13.
Zurück zum Zitat Tovar-Padilla M, Licea-Jimenez L, Pérez-Garcia SA, Alvarez-Quintana J (2015) Enhanced performance thermal diode via thermal boundary resistance at nanoscale. Appl Phys Lett 107:84103CrossRef Tovar-Padilla M, Licea-Jimenez L, Pérez-Garcia SA, Alvarez-Quintana J (2015) Enhanced performance thermal diode via thermal boundary resistance at nanoscale. Appl Phys Lett 107:84103CrossRef
14.
Zurück zum Zitat Sadat H, Le Dez V (2016) Thermal rectification in a bilayer wall: coupled radiation and conduction heat transfer. Appl Therm Eng 107:1248–1252CrossRef Sadat H, Le Dez V (2016) Thermal rectification in a bilayer wall: coupled radiation and conduction heat transfer. Appl Therm Eng 107:1248–1252CrossRef
15.
Zurück zum Zitat Wang Y, Vallabhaneni A, Hu J et al (2014) Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures. Nano Lett 14:592–596CrossRef Wang Y, Vallabhaneni A, Hu J et al (2014) Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures. Nano Lett 14:592–596CrossRef
16.
Zurück zum Zitat Yang N, Zhang G, Li B (2009) Thermal rectification in asymmetric graphene ribbons. Appl Phys Lett 95:33107CrossRef Yang N, Zhang G, Li B (2009) Thermal rectification in asymmetric graphene ribbons. Appl Phys Lett 95:33107CrossRef
17.
Zurück zum Zitat Ouyang T, Chen Y, Xie Y et al (2010) Ballistic thermal rectification in asymmetric three-terminal graphene nanojunctions. Phys Rev B 82:245403CrossRef Ouyang T, Chen Y, Xie Y et al (2010) Ballistic thermal rectification in asymmetric three-terminal graphene nanojunctions. Phys Rev B 82:245403CrossRef
18.
Zurück zum Zitat Lee J, Varshney V, Roy AK et al (2012) Thermal rectification in three-dimensional asymmetric nanostructure. Nano Lett 12:3491–3496CrossRef Lee J, Varshney V, Roy AK et al (2012) Thermal rectification in three-dimensional asymmetric nanostructure. Nano Lett 12:3491–3496CrossRef
19.
Zurück zum Zitat Jiang JW, Wang JS, Li B (2010) Topology-induced thermal rectification in carbon nanodevice. EPL (Europhys Lett) 89:46005CrossRef Jiang JW, Wang JS, Li B (2010) Topology-induced thermal rectification in carbon nanodevice. EPL (Europhys Lett) 89:46005CrossRef
20.
Zurück zum Zitat Hu J, Ruan X, Chen YP (2009) Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett 9:2730–2735CrossRef Hu J, Ruan X, Chen YP (2009) Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett 9:2730–2735CrossRef
21.
Zurück zum Zitat Yang N, Zhang G, Li B (2008) Carbon nanocone: a promising thermal rectifier. Appl Phys Lett 93:243111CrossRef Yang N, Zhang G, Li B (2008) Carbon nanocone: a promising thermal rectifier. Appl Phys Lett 93:243111CrossRef
22.
Zurück zum Zitat Zhang Z, Chen Y, Xie Y, Zhang S (2016) Transition of thermal rectification in silicon nanocones. Appl Therm Eng 102:1075–1080CrossRef Zhang Z, Chen Y, Xie Y, Zhang S (2016) Transition of thermal rectification in silicon nanocones. Appl Therm Eng 102:1075–1080CrossRef
23.
Zurück zum Zitat Hu B, Yang L (2005) Heat conduction in the Frenkel–Kontorova model. Chaos Interdiscip J Nonlinear Sci 15:15119CrossRef Hu B, Yang L (2005) Heat conduction in the Frenkel–Kontorova model. Chaos Interdiscip J Nonlinear Sci 15:15119CrossRef
24.
Zurück zum Zitat Lan J, Wang L, Li B (2007) Interface thermal resistance between Frenkel–Kontorova and Fermi–Pasta–Ulam lattices. Int J Mod Phys B 21:4013–4016CrossRef Lan J, Wang L, Li B (2007) Interface thermal resistance between Frenkel–Kontorova and Fermi–Pasta–Ulam lattices. Int J Mod Phys B 21:4013–4016CrossRef
25.
26.
Zurück zum Zitat Garcia-Garcia KI, Alvarez-Quintana J (2014) Thermal rectification assisted by lattice transitions. Int J Therm Sci 81:76–83CrossRef Garcia-Garcia KI, Alvarez-Quintana J (2014) Thermal rectification assisted by lattice transitions. Int J Therm Sci 81:76–83CrossRef
27.
Zurück zum Zitat Ben-Abdallah P, Biehs S-A (2013) Phase-change radiative thermal diode. Appl Phys Lett 103:191907CrossRef Ben-Abdallah P, Biehs S-A (2013) Phase-change radiative thermal diode. Appl Phys Lett 103:191907CrossRef
28.
Zurück zum Zitat Pallecchi E, Chen Z, Fernandes GE et al (2015) A thermal diode and novel implementation in a phase-change material. Mater Horiz 2:125–129CrossRef Pallecchi E, Chen Z, Fernandes GE et al (2015) A thermal diode and novel implementation in a phase-change material. Mater Horiz 2:125–129CrossRef
29.
Zurück zum Zitat Teng Z, Tengfei L (2015) Giant thermal rectification from polyethylene nanofiber thermal diodes. Small 11:4657–4665CrossRef Teng Z, Tengfei L (2015) Giant thermal rectification from polyethylene nanofiber thermal diodes. Small 11:4657–4665CrossRef
30.
Zurück zum Zitat Kenisarin MM (2014) Thermophysical properties of some organic phase change materials for latent heat storage. A review. Sol Energy 107:553–575CrossRef Kenisarin MM (2014) Thermophysical properties of some organic phase change materials for latent heat storage. A review. Sol Energy 107:553–575CrossRef
31.
Zurück zum Zitat Cottrill AL, Strano MS (2015) Analysis of thermal diodes enabled by junctions of phase change materials. Adv Energy Mater 5:1500921CrossRef Cottrill AL, Strano MS (2015) Analysis of thermal diodes enabled by junctions of phase change materials. Adv Energy Mater 5:1500921CrossRef
32.
Zurück zum Zitat Okaz AM, El-Osairy M, Mahmoud NS (1989) Critical behaviour of thermal resistivity of Ni. J Therm Anal 35:121–129CrossRef Okaz AM, El-Osairy M, Mahmoud NS (1989) Critical behaviour of thermal resistivity of Ni. J Therm Anal 35:121–129CrossRef
33.
Zurück zum Zitat Papp E, Szabó G, Tichy G (1977) Heat diffusivity and heat conductivity of Ni near the Curie point. Solid State Commun 21:487–490CrossRef Papp E, Szabó G, Tichy G (1977) Heat diffusivity and heat conductivity of Ni near the Curie point. Solid State Commun 21:487–490CrossRef
34.
Zurück zum Zitat Nakano E, Hirotsu K, Shimada A (1969) The crystal structures of pentaglycerol and neopentylglycol. Bull Chem Soc Jpn 42:3367CrossRef Nakano E, Hirotsu K, Shimada A (1969) The crystal structures of pentaglycerol and neopentylglycol. Bull Chem Soc Jpn 42:3367CrossRef
35.
Zurück zum Zitat Singh H, Talekar A, Chien W-M et al (2015) Continuous solid-state phase transitions in energy storage materials with orientational disorder—computational and experimental approach. Energy 91:334–349CrossRef Singh H, Talekar A, Chien W-M et al (2015) Continuous solid-state phase transitions in energy storage materials with orientational disorder—computational and experimental approach. Energy 91:334–349CrossRef
36.
Zurück zum Zitat Strauss R, Braun S, Dou S et al (1996) Phase diagram of the orientationally order-disorder binary system 2,2-dimethyl-1,3-propanediol/2,2-dimethyl-1,3-diaminopropane,[(CH3) 2 C (CH2OH) 2] × [(CH3) 2C (CH2NH2) 2] 1 – x. A thermodynamic, X-ray, and 1H-NMR study. Zeitschrift für Naturforsch A 51:871–881 Strauss R, Braun S, Dou S et al (1996) Phase diagram of the orientationally order-disorder binary system 2,2-dimethyl-1,3-propanediol/2,2-dimethyl-1,3-diaminopropane,[(CH3) 2 C (CH2OH) 2] × [(CH3) 2C (CH2NH2) 2] 1 – x. A thermodynamic, X-ray, and 1H-NMR study. Zeitschrift für Naturforsch A 51:871–881
37.
Zurück zum Zitat Feng H, Liu X, He S et al (2000) Studies on solid–solid phase transitions of polyols by infrared spectroscopy. Thermochim Acta 348:175–179CrossRef Feng H, Liu X, He S et al (2000) Studies on solid–solid phase transitions of polyols by infrared spectroscopy. Thermochim Acta 348:175–179CrossRef
38.
Zurück zum Zitat Lewowski T, Wozniak K (1997) Measurement of Curie temperature for gadolinium: a laboratory experiment for students. Eur J Phys 18:453CrossRef Lewowski T, Wozniak K (1997) Measurement of Curie temperature for gadolinium: a laboratory experiment for students. Eur J Phys 18:453CrossRef
39.
Zurück zum Zitat Zhang Z-Y, Xu Y-P, Yang M-L (2000) Measurement of the thermal conductivities of neopentylglycol, 1,1,1-trihydroxymethylpropane, and their mixture in the temperature range from 20 °C to their supermelting temperatures. J Chem Eng Data 45:1060–1063CrossRef Zhang Z-Y, Xu Y-P, Yang M-L (2000) Measurement of the thermal conductivities of neopentylglycol, 1,1,1-trihydroxymethylpropane, and their mixture in the temperature range from 20 °C to their supermelting temperatures. J Chem Eng Data 45:1060–1063CrossRef
40.
Zurück zum Zitat Alvarez-Quintana J, Rodríguez-Viejo J (2008) Extension of the 3ω method to measure the thermal conductivity of thin films without a reference sample. Sens Actuators A Phys 142:232–236CrossRef Alvarez-Quintana J, Rodríguez-Viejo J (2008) Extension of the 3ω method to measure the thermal conductivity of thin films without a reference sample. Sens Actuators A Phys 142:232–236CrossRef
42.
Zurück zum Zitat Tian W, Yang R (2008) Phonon transport and thermal conductivity percolation in random nanoparticle composites. Comput Model Eng Sci 24:123 Tian W, Yang R (2008) Phonon transport and thermal conductivity percolation in random nanoparticle composites. Comput Model Eng Sci 24:123
43.
Zurück zum Zitat Gong L, Wang Y, Cheng X et al (2014) A novel effective medium theory for modelling the thermal conductivity of porous materials. Int J Heat Mass Transf 68:295–298CrossRef Gong L, Wang Y, Cheng X et al (2014) A novel effective medium theory for modelling the thermal conductivity of porous materials. Int J Heat Mass Transf 68:295–298CrossRef
Metadaten
Titel
A hybrid thermal diode based on phase transition materials
verfasst von
J. A. Leon-Gil
J. J. Martinez-Flores
J. Alvarez-Quintana
Publikationsdatum
26.10.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3059-9

Weitere Artikel der Ausgabe 4/2019

Journal of Materials Science 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.