Skip to main content
Erschienen in: Neural Computing and Applications 4/2018

16.12.2016 | Original Article

A joint intensity and edge magnitude-based multilevel thresholding algorithm for the automatic segmentation of pathological MR brain images

verfasst von: Taranjit Kaur, Barjinder Singh Saini, Savita Gupta

Erschienen in: Neural Computing and Applications | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multilevel thresholding is one of the most popular image segmentation techniques due to its simplicity and accuracy. Most of the thresholding approaches use either the histogram of an image or information from the grey-level co-occurrence matrix (GLCM) to compute the threshold. The medical images like MRI usually have vague boundaries and poor contrast. So, segmenting these images using solely histogram or texture attributes of GLCM proves to be insufficient. This paper proposes a novel multilevel thresholding approach for automatic segmentation of tumour lesions from magnetic resonance images. The proposed technique exploits both intensity and edge magnitude information present in image histogram and GLCM to compute the multiple thresholds. Subsequently, using both attributes, a hybrid fitness function has been formulated which can capture the variations in intensity and the edge magnitude present in different tumour groups effectively. Mutation-based particle swarm optimization (MPSO) technique has been used to optimize the fitness function so as to mitigate the problem of high computational complexity existing in the exhaustive search methods. Moreover, MPSO has better exploration capabilities as compared to conventional particle swarm optimization. The performance of the devised technique has been evaluated and compared with two other intensity- and texture-based approaches using three different measures: Jaccard, Dice and misclassification error. To compute these quantitative metrics, experiments were conducted on a series of images, including low-grade glioma tumour volumes taken from brain tumour image segmentation benchmark 2012 and 2015 data sets and real clinical tumour images. Experimental results show that the proposed approach outperforms the other competing algorithms by achieving an average value equal to 0.752, 0.854, 0.0052; 0.648, 0.762, 0.0177; 0.710, 0.813, 0.0148 and 0.886, 0.937, 0.0037 for four different data sets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ganesan K, Acharya UR, Chua CK et al (2013) Computer-aided breast cancer detection using mammograms: a review. IEEE Rev Biomed Eng 6:77–98CrossRef Ganesan K, Acharya UR, Chua CK et al (2013) Computer-aided breast cancer detection using mammograms: a review. IEEE Rev Biomed Eng 6:77–98CrossRef
2.
Zurück zum Zitat Iftekharuddin KM, Zheng J, Islam MA, Ogg RJ (2009) Fractal-based brain tumor detection in multimodal MRI. Appl Math Comput 207:23–41MathSciNetMATH Iftekharuddin KM, Zheng J, Islam MA, Ogg RJ (2009) Fractal-based brain tumor detection in multimodal MRI. Appl Math Comput 207:23–41MathSciNetMATH
3.
Zurück zum Zitat Zhang T, Xia Y, Dagan D (2014) Hidden Markov random field model based brain MR image segmentation using clonal selection algorithm and Markov chain Monte Carlo method. Biomed Signal Process Control 12:10–18CrossRef Zhang T, Xia Y, Dagan D (2014) Hidden Markov random field model based brain MR image segmentation using clonal selection algorithm and Markov chain Monte Carlo method. Biomed Signal Process Control 12:10–18CrossRef
4.
Zurück zum Zitat Joe BN, Fukui MB, Meltzer CC et al (1999) Brain tumor volume measurement: comparison of manual and semi automated methods. Radiology 212:811–816CrossRef Joe BN, Fukui MB, Meltzer CC et al (1999) Brain tumor volume measurement: comparison of manual and semi automated methods. Radiology 212:811–816CrossRef
5.
Zurück zum Zitat Fletcher-Heath LM, Hall LO, Goldgof DB, Murtagh FR (2001) Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med 21:43–63CrossRef Fletcher-Heath LM, Hall LO, Goldgof DB, Murtagh FR (2001) Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med 21:43–63CrossRef
6.
Zurück zum Zitat Liu J, Udupa JK, Odhner D et al (2005) A system for brain tumor volume estimation via MR imaging and fuzzy connectedness. Comput Med Imaging Graph 29:21–34CrossRef Liu J, Udupa JK, Odhner D et al (2005) A system for brain tumor volume estimation via MR imaging and fuzzy connectedness. Comput Med Imaging Graph 29:21–34CrossRef
7.
Zurück zum Zitat Vijayakumar C, Damayanti G, Pant R, Sreedhar CM (2007) Segmentation and grading of brain tumors on apparent diffusion coefficient images using self-organizing maps. Comput Med Imaging Graph 31:473–484CrossRef Vijayakumar C, Damayanti G, Pant R, Sreedhar CM (2007) Segmentation and grading of brain tumors on apparent diffusion coefficient images using self-organizing maps. Comput Med Imaging Graph 31:473–484CrossRef
8.
Zurück zum Zitat Corso JJ, Sharon E, Dube S et al (2008) Efficient multilevel brain tumor segmentation with integrated bayesian model classification. IEEE Trans Med Imaging 27:629–640CrossRef Corso JJ, Sharon E, Dube S et al (2008) Efficient multilevel brain tumor segmentation with integrated bayesian model classification. IEEE Trans Med Imaging 27:629–640CrossRef
9.
Zurück zum Zitat Wang T, Cheng I, Basu A (2009) Fluid vector flow and applications in brain tumor segmentation. IEEE Trans Biomed Eng 56:781–789CrossRef Wang T, Cheng I, Basu A (2009) Fluid vector flow and applications in brain tumor segmentation. IEEE Trans Biomed Eng 56:781–789CrossRef
10.
Zurück zum Zitat Khotanlou H, Colliot O, Atif J, Bloch I (2009) 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst 160:1457–1473MathSciNetCrossRef Khotanlou H, Colliot O, Atif J, Bloch I (2009) 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst 160:1457–1473MathSciNetCrossRef
11.
Zurück zum Zitat Cordier N, Menze B, Delingette H, Ayache N (2013) Patch-based segmentation of brain tissues. In: Menze B, Reyes M, Jakab A, Gerstner E, Kirby J, Kalpathy-Cramer J, Farahani K (eds) MICCAI chall. Multimodal brain tumor segmentation. IEEE, Nagoya, pp 6–17 Cordier N, Menze B, Delingette H, Ayache N (2013) Patch-based segmentation of brain tissues. In: Menze B, Reyes M, Jakab A, Gerstner E, Kirby J, Kalpathy-Cramer J, Farahani K (eds) MICCAI chall. Multimodal brain tumor segmentation. IEEE, Nagoya, pp 6–17
12.
Zurück zum Zitat Doyle S, Vasseur F, Dojat M, Forbes F (2013) Fully automatic brain tumor segmentation from multiple MR sequences using hidden Markov fields and variational EM. In: Menze B, Reyes M, Jakab A, Gerstner E, Kirby J, Kalpathy-Cramer J, Farahani K (eds) MICCAI chall. Multimodal brain tumor segmentation. IEEE, Nagoya, pp 18–22 Doyle S, Vasseur F, Dojat M, Forbes F (2013) Fully automatic brain tumor segmentation from multiple MR sequences using hidden Markov fields and variational EM. In: Menze B, Reyes M, Jakab A, Gerstner E, Kirby J, Kalpathy-Cramer J, Farahani K (eds) MICCAI chall. Multimodal brain tumor segmentation. IEEE, Nagoya, pp 18–22
13.
Zurück zum Zitat Festa J, Pereira S, Mariz JA et al (2013) Automatic brain tumor segmentation of multi-sequence MR images using random decision forests. In: Menze B, Reyes M, Jakab A, Gerstner E, Kirby J, Kalpathy-Cramer J, Farahani K (eds) MICCAI chall. Multimodal brain tumor segmentation. IEEE, Nagoya, pp 23–26 Festa J, Pereira S, Mariz JA et al (2013) Automatic brain tumor segmentation of multi-sequence MR images using random decision forests. In: Menze B, Reyes M, Jakab A, Gerstner E, Kirby J, Kalpathy-Cramer J, Farahani K (eds) MICCAI chall. Multimodal brain tumor segmentation. IEEE, Nagoya, pp 23–26
14.
Zurück zum Zitat Meier R, Bauer S, Slotboom J et al (2013) A hybrid model for multimodal brain tumor segmentation. In: Menze B, Reyes M, Jakab A, Gerstner E, Kirby J, Kalpathy-Cramer J, Farahani K (eds) MICCAI chall. Multimodal brain tumor segmentation. IEEE, Nagoya, pp 31–37 Meier R, Bauer S, Slotboom J et al (2013) A hybrid model for multimodal brain tumor segmentation. In: Menze B, Reyes M, Jakab A, Gerstner E, Kirby J, Kalpathy-Cramer J, Farahani K (eds) MICCAI chall. Multimodal brain tumor segmentation. IEEE, Nagoya, pp 31–37
15.
Zurück zum Zitat Reza S, Iftekharuddin KM (2013) Multi-class abnormal brain tissue segmentation using texture features. In: Menze B, Reyes M, Jakab A, Gerstner E, Kirby J, Kalpathy-Cramer J, Farahani K (eds) MICCAI chall. Multimodal brain tumor segmentation. IEEE, Nagoya, pp 38–42 Reza S, Iftekharuddin KM (2013) Multi-class abnormal brain tissue segmentation using texture features. In: Menze B, Reyes M, Jakab A, Gerstner E, Kirby J, Kalpathy-Cramer J, Farahani K (eds) MICCAI chall. Multimodal brain tumor segmentation. IEEE, Nagoya, pp 38–42
16.
Zurück zum Zitat Zhao L, Sarikaya D, Corso JJ (2013) Automatic brain tumor segmentation with MRF on supervoxels. In: Menze B, Reyes M, Jakab A, Gerstner E, Kirby J, Kalpathy-Cramer J, Farahani K (eds) MICCAI chall. Multimodal brain tumor segmentation. IEEE, Nagoya, pp 51–57 Zhao L, Sarikaya D, Corso JJ (2013) Automatic brain tumor segmentation with MRF on supervoxels. In: Menze B, Reyes M, Jakab A, Gerstner E, Kirby J, Kalpathy-Cramer J, Farahani K (eds) MICCAI chall. Multimodal brain tumor segmentation. IEEE, Nagoya, pp 51–57
17.
Zurück zum Zitat Geremia E, Menze BH, Ayache N (2012) Spatial decision forests for glioma segmentation in multi-channel MR images. In: MICCAI chall. Multimodal brain tumor segmentation. pp 14–18 Geremia E, Menze BH, Ayache N (2012) Spatial decision forests for glioma segmentation in multi-channel MR images. In: MICCAI chall. Multimodal brain tumor segmentation. pp 14–18
18.
Zurück zum Zitat Parisot S, Wells W, Chemouny S et al (2014) Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs. Med Image Anal 18:647–659CrossRef Parisot S, Wells W, Chemouny S et al (2014) Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs. Med Image Anal 18:647–659CrossRef
19.
Zurück zum Zitat Njeh I, Sallemi L, Ben AI et al (2015) 3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach. Comput Med Imaging Graph 40:108–119CrossRef Njeh I, Sallemi L, Ben AI et al (2015) 3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach. Comput Med Imaging Graph 40:108–119CrossRef
20.
Zurück zum Zitat Chaddad A (2015) Automated feature extraction in brain tumor by magnetic resonance imaging using gaussian mixture models. J Biomed Imaging 2015:8 Chaddad A (2015) Automated feature extraction in brain tumor by magnetic resonance imaging using gaussian mixture models. J Biomed Imaging 2015:8
21.
Zurück zum Zitat Mokji MM, Abu Bakar SAR (2007) Adaptive thresholding based on co-occurrence matrix edge information. J Comput 2:44–52CrossRef Mokji MM, Abu Bakar SAR (2007) Adaptive thresholding based on co-occurrence matrix edge information. J Comput 2:44–52CrossRef
22.
Zurück zum Zitat Panda R, Agrawal S, Bhuyan S (2013) Expert systems with applications edge magnitude based multilevel thresholding using Cuckoo search technique. Expert Syst Appl 40:7617–7628CrossRef Panda R, Agrawal S, Bhuyan S (2013) Expert systems with applications edge magnitude based multilevel thresholding using Cuckoo search technique. Expert Syst Appl 40:7617–7628CrossRef
23.
Zurück zum Zitat Vidya KS, Ng EY, Acharya UR et al (2015) Computer-aided diagnosis of myocardial infarction using ultrasound images with DWT, GLCM and HOS methods: a comparative study. Comput Biol Med 62:86–93CrossRef Vidya KS, Ng EY, Acharya UR et al (2015) Computer-aided diagnosis of myocardial infarction using ultrasound images with DWT, GLCM and HOS methods: a comparative study. Comput Biol Med 62:86–93CrossRef
24.
Zurück zum Zitat Acharya UR, Faust O, Sree SV et al (2012) ThyroScreen system: high resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform. Comput Methods Programs Biomed 107:233–241CrossRef Acharya UR, Faust O, Sree SV et al (2012) ThyroScreen system: high resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform. Comput Methods Programs Biomed 107:233–241CrossRef
25.
Zurück zum Zitat Sathya PD, Kayalvizhi R (2011) Amended bacterial foraging algorithm for multilevel thresholding of magnetic resonance brain images. Measurement 44:1828–1848CrossRef Sathya PD, Kayalvizhi R (2011) Amended bacterial foraging algorithm for multilevel thresholding of magnetic resonance brain images. Measurement 44:1828–1848CrossRef
26.
Zurück zum Zitat Sathya PD, Kayalvizhi R (2011) Modified bacterial foraging algorithm based multilevel thresholding for image segmentation. Eng Appl Artif Intell 24:595–615CrossRef Sathya PD, Kayalvizhi R (2011) Modified bacterial foraging algorithm based multilevel thresholding for image segmentation. Eng Appl Artif Intell 24:595–615CrossRef
27.
Zurück zum Zitat Manikandan S, Ramar K, Iruthayarajan MW, Srinivasagan KG (2014) Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm. Measurement 47:558–568CrossRef Manikandan S, Ramar K, Iruthayarajan MW, Srinivasagan KG (2014) Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm. Measurement 47:558–568CrossRef
28.
Zurück zum Zitat Bhandari AK, Kumar A, Singh GK (2015) Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using kapur’s, otsu and tsallis functions. Expert Syst Appl 42:1573–1601CrossRef Bhandari AK, Kumar A, Singh GK (2015) Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using kapur’s, otsu and tsallis functions. Expert Syst Appl 42:1573–1601CrossRef
29.
Zurück zum Zitat Andrews PS (2006) An investigation into mutation operators for particle swarm optimization. In: 2006 IEEE international conference evolutionary computation. IEEE, Vancouver, pp 1044–1051 Andrews PS (2006) An investigation into mutation operators for particle swarm optimization. In: 2006 IEEE international conference evolutionary computation. IEEE, Vancouver, pp 1044–1051
30.
Zurück zum Zitat Kennedy J, Eberhart R (1995) Particle swarm optimization. In: International conference on neural networks (ICNN’95). IEEE, Perth, pp 1942–1948 Kennedy J, Eberhart R (1995) Particle swarm optimization. In: International conference on neural networks (ICNN’95). IEEE, Perth, pp 1942–1948
31.
Zurück zum Zitat Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8:240–255CrossRef Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8:240–255CrossRef
32.
Zurück zum Zitat Shi Y, Eberhart RC (1999) Emperical study of particle swarm optimization. In: IEEE congress on evolutionary computation. IEEE, Washington, DC, pp 101–106 Shi Y, Eberhart RC (1999) Emperical study of particle swarm optimization. In: IEEE congress on evolutionary computation. IEEE, Washington, DC, pp 101–106
33.
Zurück zum Zitat Menze BH, Jakab A, Bauer S et al (2014) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34:1993–2024CrossRef Menze BH, Jakab A, Bauer S et al (2014) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34:1993–2024CrossRef
34.
Zurück zum Zitat Islam A, Reza SMS, Iftekharuddin KM (2013) Multifractal texture estimation for detection and segmentation of brain tumors. IEEE Trans Biomed Eng 60:3204–3215CrossRef Islam A, Reza SMS, Iftekharuddin KM (2013) Multifractal texture estimation for detection and segmentation of brain tumors. IEEE Trans Biomed Eng 60:3204–3215CrossRef
35.
Zurück zum Zitat Chaira T (2011) A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images. Appl Soft Comput 11:1711–1717CrossRef Chaira T (2011) A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images. Appl Soft Comput 11:1711–1717CrossRef
36.
Zurück zum Zitat Saba L, Gao H, Raz E et al (2014) Semiautomated analysis of carotid artery wall thickness in MRI. J Magn Reson Imaging 39:1457–1467CrossRef Saba L, Gao H, Raz E et al (2014) Semiautomated analysis of carotid artery wall thickness in MRI. J Magn Reson Imaging 39:1457–1467CrossRef
38.
Zurück zum Zitat Acharya UR, Sree SV, Saba L et al (2013) Ovarian tumor characterization and classification using ultrasound—a new online paradigm. J Digit Imaging 26:544–553CrossRef Acharya UR, Sree SV, Saba L et al (2013) Ovarian tumor characterization and classification using ultrasound—a new online paradigm. J Digit Imaging 26:544–553CrossRef
39.
Zurück zum Zitat Acharya UR, Mookiah MRK, Vinitha Sree S et al (2013) Atherosclerotic plaque tissue characterization in 2D ultrasound longitudinal carotid scans for automated classification: a paradigm for stroke risk assessment. Med Biol Eng Comput 51:513–523CrossRef Acharya UR, Mookiah MRK, Vinitha Sree S et al (2013) Atherosclerotic plaque tissue characterization in 2D ultrasound longitudinal carotid scans for automated classification: a paradigm for stroke risk assessment. Med Biol Eng Comput 51:513–523CrossRef
40.
Zurück zum Zitat Leong SS, Vijayananthan A, Yaakup NA et al (2016) Observer performance in characterization of carotid plaque texture and surface characteristics with 3D versus 2D ultrasound. Comput Biol Med 78:58–64CrossRef Leong SS, Vijayananthan A, Yaakup NA et al (2016) Observer performance in characterization of carotid plaque texture and surface characteristics with 3D versus 2D ultrasound. Comput Biol Med 78:58–64CrossRef
41.
Zurück zum Zitat Acharya UR, Raghavendra U, Fujita H et al (2016) Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Comput Biol, Med Acharya UR, Raghavendra U, Fujita H et al (2016) Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Comput Biol, Med
42.
Zurück zum Zitat Acharya UR, Sree SV, Ribeiro R et al (2012) Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm. Med Phys 39:4255CrossRef Acharya UR, Sree SV, Ribeiro R et al (2012) Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm. Med Phys 39:4255CrossRef
43.
Zurück zum Zitat Acharya UR, Faust O, Sree SV et al (2012) An accurate and generalized approach to plaque characterization in 346 carotid ultrasound scans. IEEE Trans Instrum Meas 61:1045–1053CrossRef Acharya UR, Faust O, Sree SV et al (2012) An accurate and generalized approach to plaque characterization in 346 carotid ultrasound scans. IEEE Trans Instrum Meas 61:1045–1053CrossRef
Metadaten
Titel
A joint intensity and edge magnitude-based multilevel thresholding algorithm for the automatic segmentation of pathological MR brain images
verfasst von
Taranjit Kaur
Barjinder Singh Saini
Savita Gupta
Publikationsdatum
16.12.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 4/2018
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2751-4

Weitere Artikel der Ausgabe 4/2018

Neural Computing and Applications 4/2018 Zur Ausgabe