Skip to main content
Erschienen in: Journal of Scientific Computing 3/2017

19.12.2016

A Kinetic Energy Preserving DG Scheme Based on Gauss–Legendre Points

verfasst von: Sigrun Ortleb

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the context of numerical methods for conservation laws, not only the preservation of the primary conserved quantities can be of interest, but also the balance of secondary ones such kinetic energy in case of the Euler equations of gas dynamics. In this work, we construct a kinetic energy preserving discontinuous Galerkin method on Gauss–Legendre nodes based on the framework of summation-by-parts operators. For a Gauss–Legendre point distribution, boundary terms require special attention. In fact, stability problems will be demonstrated for a combination of skew-symmetric and boundary terms that disagrees with exclusively interior nodal sets. We will theoretically investigate the required form of the corresponding boundary correction terms in the skew-symmetric formulation leading to a conservative and consistent scheme. In numerical experiments, we study the order of convergence for smooth solutions, the kinetic energy balance and the behaviour of different variants of the scheme applied to an acoustic pressure wave and a viscous shock tube. Using Gauss–Legendre nodes results in a more accurate approximation in our numerical experiments for viscous compressible flow. Moreover, for two-dimensional decaying homogeneous turbulence, kinetic energy preservation yields a better representation of the energy spectrum.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Allaneau, Y., Jameson, A.: Kinetic energy conserving discontinuous Galerkin scheme. In: Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. AIAA-2011-198 (2011) Allaneau, Y., Jameson, A.: Kinetic energy conserving discontinuous Galerkin scheme. In: Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. AIAA-2011-198 (2011)
2.
Zurück zum Zitat Bassi, F., Franchina, N., Ghidoni, A., Rebay, S.: A numerical investigation of a spectral-type nodal collocation discontinuous Galerkin approximation of the Euler and Navier-Stokes equations. Int. J. Numer. Methods Fluids 71(10), 1322–1339 (2013)MathSciNetCrossRef Bassi, F., Franchina, N., Ghidoni, A., Rebay, S.: A numerical investigation of a spectral-type nodal collocation discontinuous Galerkin approximation of the Euler and Navier-Stokes equations. Int. J. Numer. Methods Fluids 71(10), 1322–1339 (2013)MathSciNetCrossRef
3.
Zurück zum Zitat Bassi, F., Rebay, S.: Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 40, 197–207 (2002)CrossRefMATH Bassi, F., Rebay, S.: Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 40, 197–207 (2002)CrossRefMATH
4.
Zurück zum Zitat Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148, 341–365 (1999)MathSciNetCrossRefMATH Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148, 341–365 (1999)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier–Stokes equations. Commun. Comput. Phys. 14, 1252–1286 (2013)MathSciNetCrossRef Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier–Stokes equations. Commun. Comput. Phys. 14, 1252–1286 (2013)MathSciNetCrossRef
6.
Zurück zum Zitat Del Rey Fernández, D.C., Boom, P.D., Zingg, D.W.: A generalized framework for nodal first derivative summation-by-parts operators. J. Comput. Phys. 266, 214–239 (2014)MathSciNetCrossRefMATH Del Rey Fernández, D.C., Boom, P.D., Zingg, D.W.: A generalized framework for nodal first derivative summation-by-parts operators. J. Comput. Phys. 266, 214–239 (2014)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Fisher, T.C., Carpenter, M.H., Nordström, J., Yamaleev, N.K., Swanson, C.: Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 234, 353–375 (2013)MathSciNetCrossRefMATH Fisher, T.C., Carpenter, M.H., Nordström, J., Yamaleev, N.K., Swanson, C.: Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 234, 353–375 (2013)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35, A1233–A1253 (2013)MathSciNetCrossRefMATH Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35, A1233–A1253 (2013)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Gassner, G.J.: A kinetic energy preserving nodal discontinuous Galerkin spectral element method. Int. J. Numer. Methods Fluids 76, 28–50 (2014)MathSciNetCrossRef Gassner, G.J.: A kinetic energy preserving nodal discontinuous Galerkin spectral element method. Int. J. Numer. Methods Fluids 76, 28–50 (2014)MathSciNetCrossRef
10.
Zurück zum Zitat Gassner, G.J., Beck, A.D.: On the accuracy of high-order discretizations for underresolved turbulence simulations. Theor. Comput. Fluid Dyn. 27, 221–237 (2013)CrossRef Gassner, G.J., Beck, A.D.: On the accuracy of high-order discretizations for underresolved turbulence simulations. Theor. Comput. Fluid Dyn. 27, 221–237 (2013)CrossRef
11.
Zurück zum Zitat Gassner, G.J., Kopriva, D.A.: A comparison of the dispersion and dissipation errors of Gauss and Gauss–Lobatto discontinuous Galerkin spectral element methods. SIAM J. Sci. Comput. 33(5), 2560–2579 (2011)MathSciNetCrossRefMATH Gassner, G.J., Kopriva, D.A.: A comparison of the dispersion and dissipation errors of Gauss and Gauss–Lobatto discontinuous Galerkin spectral element methods. SIAM J. Sci. Comput. 33(5), 2560–2579 (2011)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Hicken, J.E., Del Rey Fernández, D.C., Zingg, D.W.: Multidimensional summation-by-parts operators: General theory and application to simplex elements. SIAM J. Sci. Comput. 38(4), A1935–A1958 (2016) Hicken, J.E., Del Rey Fernández, D.C., Zingg, D.W.: Multidimensional summation-by-parts operators: General theory and application to simplex elements. SIAM J. Sci. Comput. 38(4), A1935–A1958 (2016)
13.
Zurück zum Zitat Ishiko, K., Ohnishi, N., Ueno, K., Sawada, K.: Implicit large eddy simulation of two-dimensional homogeneous turbulence using weighted compact nonlinear scheme. J. Fluids Eng. 131, 061401:1–061401:14 (2009)CrossRef Ishiko, K., Ohnishi, N., Ueno, K., Sawada, K.: Implicit large eddy simulation of two-dimensional homogeneous turbulence using weighted compact nonlinear scheme. J. Fluids Eng. 131, 061401:1–061401:14 (2009)CrossRef
14.
Zurück zum Zitat Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228, 5410–5436 (2009)MathSciNetCrossRefMATH Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228, 5410–5436 (2009)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Jameson, A.: Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes. J. Sci. Comput. 34, 188–208 (2008)MathSciNetCrossRefMATH Jameson, A.: Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes. J. Sci. Comput. 34, 188–208 (2008)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Javadi, A., Pasandideh-Fard, M., Malek-Jafarian, M.: Modification of k-\(\epsilon \) turbulent model using kinetic energy-preserving method. Numer. Heat Transf. Part B Fundam. 68, 554–577 (2015)CrossRef Javadi, A., Pasandideh-Fard, M., Malek-Jafarian, M.: Modification of k-\(\epsilon \) turbulent model using kinetic energy-preserving method. Numer. Heat Transf. Part B Fundam. 68, 554–577 (2015)CrossRef
17.
Zurück zum Zitat Kopriva, D.A., Gassner, G.J.: On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J. Sci. Comput. 44, 136–155 (2010)MathSciNetCrossRefMATH Kopriva, D.A., Gassner, G.J.: On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J. Sci. Comput. 44, 136–155 (2010)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Kreiss, H.O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: Boor, C.D. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 195–212. Academic Press, London (1974)CrossRef Kreiss, H.O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: Boor, C.D. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 195–212. Academic Press, London (1974)CrossRef
19.
Zurück zum Zitat Morinishi, Y.: Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-mach number flows. J. Comput. Phys. 229, 276–300 (2010)MathSciNetCrossRefMATH Morinishi, Y.: Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-mach number flows. J. Comput. Phys. 229, 276–300 (2010)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Morinishi, Y., Lund, T., Vasilyev, O., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143, 90–124 (1998)MathSciNetCrossRefMATH Morinishi, Y., Lund, T., Vasilyev, O., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143, 90–124 (1998)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Nordström, J.: Conservative finite difference formulations, variable coefficients, energy estimates and artificial dissipation. J. Sci. Comput. 29, 375–404 (2006)MathSciNetCrossRefMATH Nordström, J.: Conservative finite difference formulations, variable coefficients, energy estimates and artificial dissipation. J. Sci. Comput. 29, 375–404 (2006)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Nordström, J., Forsberg, K., Adamsson, C., Eliasson, P.: Finite volume methods, unstructured meshes and strict stability for hyperbolic problems. Appl. Numer. Math. 45, 453–473 (2003)MathSciNetCrossRefMATH Nordström, J., Forsberg, K., Adamsson, C., Eliasson, P.: Finite volume methods, unstructured meshes and strict stability for hyperbolic problems. Appl. Numer. Math. 45, 453–473 (2003)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Ranocha, H., Öffner, P., Sonar, T.: Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311, 299–328 (2016) Ranocha, H., Öffner, P., Sonar, T.: Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311, 299–328 (2016)
24.
Zurück zum Zitat San, O., Staples, A.E.: High-order methods for decaying two-dimensional homogeneous isotropic turbulence. Comput. Fluids 63, 105–127 (2012)MathSciNetCrossRef San, O., Staples, A.E.: High-order methods for decaying two-dimensional homogeneous isotropic turbulence. Comput. Fluids 63, 105–127 (2012)MathSciNetCrossRef
25.
Zurück zum Zitat Stelling, G.S., Duinmeijer, S.P.A.: A staggered conservative scheme for every Froude number in rapidly varied shallow water flows. Int. J. Numer. Methods Fluids 43, 1329–1354 (2003)MathSciNetCrossRefMATH Stelling, G.S., Duinmeijer, S.P.A.: A staggered conservative scheme for every Froude number in rapidly varied shallow water flows. Int. J. Numer. Methods Fluids 43, 1329–1354 (2003)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Subbareddy, P.K., Candler, G.V.: A fully discrete, kinetic energy consistent finite-volume scheme for compressible flows. J. Comput. Phys. 228, 1347–1364 (2009)MathSciNetCrossRefMATH Subbareddy, P.K., Candler, G.V.: A fully discrete, kinetic energy consistent finite-volume scheme for compressible flows. J. Comput. Phys. 228, 1347–1364 (2009)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)MathSciNetCrossRefMATH Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)MathSciNetCrossRefMATH
28.
29.
Zurück zum Zitat van Leer, B.: Flux-vector splitting for the Euler equations. In: Krause, E. (ed.) Eighth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, vol. 170, pp. 507–512. Springer, Berlin (1982)CrossRef van Leer, B.: Flux-vector splitting for the Euler equations. In: Krause, E. (ed.) Eighth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, vol. 170, pp. 507–512. Springer, Berlin (1982)CrossRef
30.
Zurück zum Zitat van’t Hof, B., Veldman, A.E.: Mass, momentum and energy conserving (MAMEC) discretizations on general grids for the compressible Euler and shallow water equations. J. Comput. Phys. 231, 4723–4744 (2012)MathSciNetCrossRefMATH van’t Hof, B., Veldman, A.E.: Mass, momentum and energy conserving (MAMEC) discretizations on general grids for the compressible Euler and shallow water equations. J. Comput. Phys. 231, 4723–4744 (2012)MathSciNetCrossRefMATH
31.
32.
Zurück zum Zitat Yu, J., Yan, C., Jiang, Z.: On the use of the discontinuous galerkin method for numerical simulation of two-dimensional compressible turbulence with shocks. Sci. China Phys. Mech. Astron. 57(9), 1758–1770 (2014)CrossRef Yu, J., Yan, C., Jiang, Z.: On the use of the discontinuous galerkin method for numerical simulation of two-dimensional compressible turbulence with shocks. Sci. China Phys. Mech. Astron. 57(9), 1758–1770 (2014)CrossRef
Metadaten
Titel
A Kinetic Energy Preserving DG Scheme Based on Gauss–Legendre Points
verfasst von
Sigrun Ortleb
Publikationsdatum
19.12.2016
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2017
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0334-2

Weitere Artikel der Ausgabe 3/2017

Journal of Scientific Computing 3/2017 Zur Ausgabe