Skip to main content
Erschienen in: Shape Memory and Superelasticity 1/2019

01.03.2019 | Special Issue: HTSMA 2018

A Kinetic Study on the Evolution of Martensitic Transformation Behavior and Microstructures in Ti–Ta High-Temperature Shape-Memory Alloys During Aging

verfasst von: Alexander Paulsen, Jan Frenzel, Dennis Langenkämper, Ramona Rynko, Peter Kadletz, Lukas Grossmann, Wolfgang W. Schmahl, Christoph Somsen, Gunther Eggeler

Erschienen in: Shape Memory and Superelasticity | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ti–Ta alloys represent candidate materials for high-temperature shape-memory alloys (HTSMAs). They outperform several other types of HTSMAs in terms of cost, ductility, and cold workability. However, Ti–Ta alloys are characterized by a relatively fast microstructural degradation during exposure to elevated temperatures, which gives rise to functional fatigue. In the present study, we investigate how isothermal aging affects the martensitic transformation behavior and microstructures in Ti70Ta30 HTSMAs. Ti–Ta sheets with fully recrystallized grain structures were obtained from a processing route involving arc melting, heat treatments, and rolling. The final Ti–Ta sheets were subjected to an extensive aging heat treatment program. Differential scanning calorimetry and various microstructural characterization techniques such as scanning electron microscopy, transmission electron microscopy, conventional X-ray, and synchrotron diffraction were used for the characterization of resulting material states. We identify different types of microstructural evolution processes and their effects on the martensitic and reverse transformation. Based on these results, an isothermal time temperature transformation (TTT) diagram for Ti70Ta30 was established. This TTT plot rationalizes the dominating microstructural evolution processes and related kinetics. In the present work, we also discuss possible options to slow down microstructural and functional degradation in Ti–Ta HTSMAs.
Literatur
1.
Zurück zum Zitat Funakubo H (1987) Shape memory alloys. Gordon and Breach, New York Funakubo H (1987) Shape memory alloys. Gordon and Breach, New York
2.
Zurück zum Zitat Wayman CM, Deurig TW (1990) An introduction to martensite and shape memory. In: Duerig TW, Melton KN, Stöckel D, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth-Heinemann, London Wayman CM, Deurig TW (1990) An introduction to martensite and shape memory. In: Duerig TW, Melton KN, Stöckel D, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth-Heinemann, London
3.
Zurück zum Zitat Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678CrossRef Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678CrossRef
4.
Zurück zum Zitat Miyazaki S, Otsuka K (1989) Development of shape memory alloys. ISIJ Int 29(5):353–377CrossRef Miyazaki S, Otsuka K (1989) Development of shape memory alloys. ISIJ Int 29(5):353–377CrossRef
5.
Zurück zum Zitat Mohd Jani J, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRef Mohd Jani J, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRef
6.
Zurück zum Zitat Morgan NB (2004) Medical shape memory alloy applications—the market and its products. Mater Sci Eng, A 378(1–2):16–23CrossRef Morgan NB (2004) Medical shape memory alloy applications—the market and its products. Mater Sci Eng, A 378(1–2):16–23CrossRef
7.
Zurück zum Zitat Duerig TW (2002) The use of superelasticity in modern medicine. MRS Bull 27(2):101–104CrossRef Duerig TW (2002) The use of superelasticity in modern medicine. MRS Bull 27(2):101–104CrossRef
8.
Zurück zum Zitat Van Humbeeck J (1999) Non-medical applications of shape memory alloys. Mater Sci Eng, A 273–275:134–148CrossRef Van Humbeeck J (1999) Non-medical applications of shape memory alloys. Mater Sci Eng, A 273–275:134–148CrossRef
9.
Zurück zum Zitat Bhattacharya K (2004) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, Oxford Bhattacharya K (2004) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, Oxford
10.
Zurück zum Zitat Borboni A, Faglia R (2018) Robust design of a shape memory actuator with slider and slot layout and passive cooling control. Microsyst Technol 24(3):1379–1389CrossRef Borboni A, Faglia R (2018) Robust design of a shape memory actuator with slider and slot layout and passive cooling control. Microsyst Technol 24(3):1379–1389CrossRef
11.
Zurück zum Zitat Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315CrossRef Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315CrossRef
12.
Zurück zum Zitat Yuan ZS, Lin DZ, Cui Y et al (2018) Research progress on the phase transformation behavior, microstructure and property of NiTi based high temperature shape memory alloys. Rare Met Mat Eng 47(7):2269–2274 Yuan ZS, Lin DZ, Cui Y et al (2018) Research progress on the phase transformation behavior, microstructure and property of NiTi based high temperature shape memory alloys. Rare Met Mat Eng 47(7):2269–2274
13.
Zurück zum Zitat Ronald N, Tiffany B, Santo P (2006) NiTi-based high-temperature shape-memory alloys. In: Soboyejo WO, Srivatsan TS (eds) Advanced structural materials. CRC Press, Boca Raton Ronald N, Tiffany B, Santo P (2006) NiTi-based high-temperature shape-memory alloys. In: Soboyejo WO, Srivatsan TS (eds) Advanced structural materials. CRC Press, Boca Raton
14.
Zurück zum Zitat Firstov GS, Van Humbeeck J, Koval YN (2004) High-temperature shape memory alloys: some recent developments. Mater Sci Eng, A 378(1–2):2–10CrossRef Firstov GS, Van Humbeeck J, Koval YN (2004) High-temperature shape memory alloys: some recent developments. Mater Sci Eng, A 378(1–2):2–10CrossRef
15.
Zurück zum Zitat Bucsek AN, Hudish GA, Bigelow GS, Noebe RD, Stebner AP (2016) Composition, compatibility, and the functional performances of ternary NiTiX high-temperature shape memory alloys. Shape Mem Superelast 2(1):62–79CrossRef Bucsek AN, Hudish GA, Bigelow GS, Noebe RD, Stebner AP (2016) Composition, compatibility, and the functional performances of ternary NiTiX high-temperature shape memory alloys. Shape Mem Superelast 2(1):62–79CrossRef
16.
Zurück zum Zitat Buenconsejo PJS, Ludwig A (2014) Composition–structure–function diagrams of Ti–Ni–Au thin film shape memory alloys. ACS Comb Sci 16(12):678–685CrossRef Buenconsejo PJS, Ludwig A (2014) Composition–structure–function diagrams of Ti–Ni–Au thin film shape memory alloys. ACS Comb Sci 16(12):678–685CrossRef
17.
Zurück zum Zitat Monroe JA, Karaman I, Lagoudas DC, Bigelow G, Noebe RD, Padula S II (2011) Determining recoverable and irrecoverable contributions to accumulated strain in a NiTiPd high-temperature shape memory alloy during thermomechanical cycling. Scripta Mater 65(2):123–126CrossRef Monroe JA, Karaman I, Lagoudas DC, Bigelow G, Noebe RD, Padula S II (2011) Determining recoverable and irrecoverable contributions to accumulated strain in a NiTiPd high-temperature shape memory alloy during thermomechanical cycling. Scripta Mater 65(2):123–126CrossRef
18.
Zurück zum Zitat Kumar PK, Lagoudas DC (2010) Experimental and microstructural characterization of simultaneous creep, plasticity and phase transformation in Ti50Pd40Ni10 high-temperature shape memory alloy. Acta Mater 58(5):1618–1628CrossRef Kumar PK, Lagoudas DC (2010) Experimental and microstructural characterization of simultaneous creep, plasticity and phase transformation in Ti50Pd40Ni10 high-temperature shape memory alloy. Acta Mater 58(5):1618–1628CrossRef
19.
Zurück zum Zitat Lin B, Gall K, Maier HJ, Waldron R (2009) Structure and thermomechanical behavior of NiTiPt shape memory alloy wires. Acta Biomater 5(1):257–267CrossRef Lin B, Gall K, Maier HJ, Waldron R (2009) Structure and thermomechanical behavior of NiTiPt shape memory alloy wires. Acta Biomater 5(1):257–267CrossRef
20.
Zurück zum Zitat Evirgen A, Pons J, Karaman I, Santamarta R, Noebe R (2018) H-phase precipitation and martensitic transformation in Ni-rich Ni–Ti–Hf and Ni–Ti-Zr High-temperature shape memory alloys. Shape Mem Superelast 4(1):85–92CrossRef Evirgen A, Pons J, Karaman I, Santamarta R, Noebe R (2018) H-phase precipitation and martensitic transformation in Ni-rich Ni–Ti–Hf and Ni–Ti-Zr High-temperature shape memory alloys. Shape Mem Superelast 4(1):85–92CrossRef
21.
Zurück zum Zitat Santamarta R, Evirgen A, Perez-Sierra AM et al (2015) Effect of thermal treatments on Ni-Mn-Ga and Ni-rich Ni-Ti-Hf/Zr high-temperature shape memory alloys. Shape Mem Superelast 1(4):418–428CrossRef Santamarta R, Evirgen A, Perez-Sierra AM et al (2015) Effect of thermal treatments on Ni-Mn-Ga and Ni-rich Ni-Ti-Hf/Zr high-temperature shape memory alloys. Shape Mem Superelast 1(4):418–428CrossRef
22.
Zurück zum Zitat Elahinia M, Moghaddam NS, Amerinatanzi A et al (2018) Additive manufacturing of NiTiHf high temperature shape memory alloy. Scr Mater 145:90–94CrossRef Elahinia M, Moghaddam NS, Amerinatanzi A et al (2018) Additive manufacturing of NiTiHf high temperature shape memory alloy. Scr Mater 145:90–94CrossRef
23.
Zurück zum Zitat Zhang X, Wang Q, Zhao X, Wang F, Liu QS (2018) Study of Cu-Al-Ni-Ga as high-temperature shape memory alloys. Appl Phys A 124(3):6CrossRef Zhang X, Wang Q, Zhao X, Wang F, Liu QS (2018) Study of Cu-Al-Ni-Ga as high-temperature shape memory alloys. Appl Phys A 124(3):6CrossRef
24.
Zurück zum Zitat Jiang HX, Wang CP, Xu WW et al (2017) Alloying effects of Ga on the Co-V-Si high-temperature shape memory alloys. Mater Des 116:300–308CrossRef Jiang HX, Wang CP, Xu WW et al (2017) Alloying effects of Ga on the Co-V-Si high-temperature shape memory alloys. Mater Des 116:300–308CrossRef
25.
Zurück zum Zitat Perez-Checa A, Feuchtwanger J, Barandiaran JM, Sozinov A, Ullakko K, Chernenko VA (2018) Ni-Mn-Ga-(Co, Fe, Cu) high temperature ferromagnetic shape memory alloys: effect of Mn and Ga replacement by Cu. Scr Mater 154:131–133CrossRef Perez-Checa A, Feuchtwanger J, Barandiaran JM, Sozinov A, Ullakko K, Chernenko VA (2018) Ni-Mn-Ga-(Co, Fe, Cu) high temperature ferromagnetic shape memory alloys: effect of Mn and Ga replacement by Cu. Scr Mater 154:131–133CrossRef
26.
Zurück zum Zitat Cortie MB, Kealley CS, Bhatia V, Thorogood GJ, Elcombe MM, Avdeev M (2011) High temperature transformations of the Au7Cu5Al4 shape-memory alloy. J Alloy Compd 509(8):3502–3508CrossRef Cortie MB, Kealley CS, Bhatia V, Thorogood GJ, Elcombe MM, Avdeev M (2011) High temperature transformations of the Au7Cu5Al4 shape-memory alloy. J Alloy Compd 509(8):3502–3508CrossRef
27.
Zurück zum Zitat Tan C, Cai W, Tian X (2007) Structural, electronic and elastic properties of NbRu high-temperature shape memory alloys. Scr Mater 56(7):625–628CrossRef Tan C, Cai W, Tian X (2007) Structural, electronic and elastic properties of NbRu high-temperature shape memory alloys. Scr Mater 56(7):625–628CrossRef
28.
Zurück zum Zitat Van Humbeeck J (1997) Shape memory materials: state of the art and requirements for future applications. J Phys IV 7(C5):C5-3–C5-12 Van Humbeeck J (1997) Shape memory materials: state of the art and requirements for future applications. J Phys IV 7(C5):C5-3–C5-12
29.
Zurück zum Zitat Wojcik CC (2009) Properties and heat treatment of high transition temperature Ni-Ti-Hf alloys. J Mater Eng Perform 18(5–6):511–516CrossRef Wojcik CC (2009) Properties and heat treatment of high transition temperature Ni-Ti-Hf alloys. J Mater Eng Perform 18(5–6):511–516CrossRef
30.
Zurück zum Zitat Canadinc D, Trehern W, Ozcan H et al (2017) On the deformation response and cyclic stability of Ni50Ti35Hf15 high temperature shape memory alloy wires. Scr Mater 135:92–96CrossRef Canadinc D, Trehern W, Ozcan H et al (2017) On the deformation response and cyclic stability of Ni50Ti35Hf15 high temperature shape memory alloy wires. Scr Mater 135:92–96CrossRef
31.
Zurück zum Zitat Carl M, Van Doren B, Young ML (2018) In situ synchrotron radiation X-ray diffraction study on phase and oxide growth during a high temperature cycle of a NiTi-20 at.% Zr high temperature shape memory alloy. Shape Mem Superelast 4(1):174–185CrossRef Carl M, Van Doren B, Young ML (2018) In situ synchrotron radiation X-ray diffraction study on phase and oxide growth during a high temperature cycle of a NiTi-20 at.% Zr high temperature shape memory alloy. Shape Mem Superelast 4(1):174–185CrossRef
32.
Zurück zum Zitat Buenconsejo PJS, Kim HY, Miyazaki S (2011) Novel beta-TiTaAl alloys with excellent cold workability and a stable high-temperature shape memory effect. Scr Mater 64(12):1114–1117CrossRef Buenconsejo PJS, Kim HY, Miyazaki S (2011) Novel beta-TiTaAl alloys with excellent cold workability and a stable high-temperature shape memory effect. Scr Mater 64(12):1114–1117CrossRef
33.
Zurück zum Zitat Zhang J, Rynko R, Frenzel J, Somsen C, Eggeler G (2014) Ingot metallurgy and microstructural characterization of Ti–Ta alloys. Int J Mater Res 105(2):156–167CrossRef Zhang J, Rynko R, Frenzel J, Somsen C, Eggeler G (2014) Ingot metallurgy and microstructural characterization of Ti–Ta alloys. Int J Mater Res 105(2):156–167CrossRef
34.
Zurück zum Zitat Lütjering G, Williams JC (2007) Titanium. Springer, Heidelberg Lütjering G, Williams JC (2007) Titanium. Springer, Heidelberg
35.
Zurück zum Zitat Kim HY, Miyazaki S (2018) Ni-free Ti-based shape memory alloys. Butterworth-Heinemann, Oxford Kim HY, Miyazaki S (2018) Ni-free Ti-based shape memory alloys. Butterworth-Heinemann, Oxford
36.
Zurück zum Zitat Murray JL (1981) The Ta-Ti (Tantalum-Titanium) system. Bull Alloy Phase Diagr 2(1):62–66CrossRef Murray JL (1981) The Ta-Ti (Tantalum-Titanium) system. Bull Alloy Phase Diagr 2(1):62–66CrossRef
37.
Zurück zum Zitat Bagarjatskii Y, Nosova G, Tagunova T (1958) Laws of formation of metastable phase in titanium alloys. Dokl Akad Nauk SSSR 122(4):593–596 Bagarjatskii Y, Nosova G, Tagunova T (1958) Laws of formation of metastable phase in titanium alloys. Dokl Akad Nauk SSSR 122(4):593–596
38.
Zurück zum Zitat Petrzhik M, Fedotov S, Kovneristyi YK, Zhebyneva N (1992) Effect of thermal cycling on the structure of quenched alloys of the Ti−Ta−Nb system. Met Sci Heat Treat 34(3):190–193CrossRef Petrzhik M, Fedotov S, Kovneristyi YK, Zhebyneva N (1992) Effect of thermal cycling on the structure of quenched alloys of the Ti−Ta−Nb system. Met Sci Heat Treat 34(3):190–193CrossRef
39.
Zurück zum Zitat Kim HY, Fukushima T, Buenconsejo PJS, Nam T-H, Miyazaki S (2011) Martensitic transformation and shape memory properties of Ti-Ta-Sn high temperature shape memory alloys. Mater Sci Eng, A 528(24):7238–7246CrossRef Kim HY, Fukushima T, Buenconsejo PJS, Nam T-H, Miyazaki S (2011) Martensitic transformation and shape memory properties of Ti-Ta-Sn high temperature shape memory alloys. Mater Sci Eng, A 528(24):7238–7246CrossRef
40.
Zurück zum Zitat Buenconsejo PJS, Kim HY, Miyazaki S (2009) Effect of ternary alloying elements on the shape memory behavior of Ti-Ta alloys. Acta Mater 57(8):2509–2515CrossRef Buenconsejo PJS, Kim HY, Miyazaki S (2009) Effect of ternary alloying elements on the shape memory behavior of Ti-Ta alloys. Acta Mater 57(8):2509–2515CrossRef
41.
Zurück zum Zitat Buenconsejo PJS, Kim HY, Hosoda H, Miyazaki S (2009) Shape memory behavior of Ti-Ta and its potential as a high-temperature shape memory alloy. Acta Mater 57(4):1068–1077CrossRef Buenconsejo PJS, Kim HY, Hosoda H, Miyazaki S (2009) Shape memory behavior of Ti-Ta and its potential as a high-temperature shape memory alloy. Acta Mater 57(4):1068–1077CrossRef
42.
Zurück zum Zitat Chakraborty T, Rogal J, Drautz R (2015) Martensitic transformation between competing phases in Ti-Ta alloys: a solid-state nudged elastic band study. J Phys: Condens Matter 27:115401 Chakraborty T, Rogal J, Drautz R (2015) Martensitic transformation between competing phases in Ti-Ta alloys: a solid-state nudged elastic band study. J Phys: Condens Matter 27:115401
43.
Zurück zum Zitat Chakraborty T, Rogal J, Drautz R (2016) Unraveling the composition dependence of the martensitic transformation temperature: a first-principles study of Ti-Ta alloys. Phys Rev B 94(22):224104CrossRef Chakraborty T, Rogal J, Drautz R (2016) Unraveling the composition dependence of the martensitic transformation temperature: a first-principles study of Ti-Ta alloys. Phys Rev B 94(22):224104CrossRef
44.
Zurück zum Zitat Ferrari A, Paulsen A, Frenzel J, Rogal J, Eggeler G, Drautz R (2018) Unusual composition dependence of transformation temperatures in Ti-Ta-X shape memory alloys. Phys Rev Mater 2(7):073609CrossRef Ferrari A, Paulsen A, Frenzel J, Rogal J, Eggeler G, Drautz R (2018) Unusual composition dependence of transformation temperatures in Ti-Ta-X shape memory alloys. Phys Rev Mater 2(7):073609CrossRef
45.
Zurück zum Zitat Rynko R, Marquardt A, Paulsen A, Frenzel J, Somsen C, Eggeler G (2015) Microstructural evolution in a Ti–Ta high-temperature shape memory alloy during creep. Int J Mater Res 106(4):331–341CrossRef Rynko R, Marquardt A, Paulsen A, Frenzel J, Somsen C, Eggeler G (2015) Microstructural evolution in a Ti–Ta high-temperature shape memory alloy during creep. Int J Mater Res 106(4):331–341CrossRef
46.
Zurück zum Zitat Niendorf T, Krooss P, Batyrsina E et al (2014) On the functional degradation of binary titanium-tantalum high-temperature shape memory alloys—a new concept for fatigue life extension. Funct Mater Lett 7(4):1450042CrossRef Niendorf T, Krooss P, Batyrsina E et al (2014) On the functional degradation of binary titanium-tantalum high-temperature shape memory alloys—a new concept for fatigue life extension. Funct Mater Lett 7(4):1450042CrossRef
47.
Zurück zum Zitat Niendorf T, Krooss P, Batyrsina E et al (2015) Functional and structural fatigue of titanium tantalum high temperature shape memory alloys (HT SMAs). Mater Sci Eng, A 620:359–366CrossRef Niendorf T, Krooss P, Batyrsina E et al (2015) Functional and structural fatigue of titanium tantalum high temperature shape memory alloys (HT SMAs). Mater Sci Eng, A 620:359–366CrossRef
48.
Zurück zum Zitat Niendorf T, Krooß P, Somsen C et al (2015) Cyclic degradation of titanium–tantalum high-temperature shape memory alloys—the role of dislocation activity and chemical decomposition. Funct Mater Lett 8(6):1550062CrossRef Niendorf T, Krooß P, Somsen C et al (2015) Cyclic degradation of titanium–tantalum high-temperature shape memory alloys—the role of dislocation activity and chemical decomposition. Funct Mater Lett 8(6):1550062CrossRef
49.
Zurück zum Zitat Maier HJ, Karsten E, Paulsen A et al (2017) Microstructural evolution and functional fatigue of a Ti-25Ta high-temperature shape memory alloy. J Mater Res 32(23):4287–4295CrossRef Maier HJ, Karsten E, Paulsen A et al (2017) Microstructural evolution and functional fatigue of a Ti-25Ta high-temperature shape memory alloy. J Mater Res 32(23):4287–4295CrossRef
50.
Zurück zum Zitat Abkowitz S, Abkowitz SM, Fisher H, Allen SM (2008) The potential of titanium-tantalum alloys for implantable medical devices. Med Device Mater Iv:124–129 Abkowitz S, Abkowitz SM, Fisher H, Allen SM (2008) The potential of titanium-tantalum alloys for implantable medical devices. Med Device Mater Iv:124–129
51.
Zurück zum Zitat Li YC, Xiong JY, Wong CS, Hodgson PD, Wen C (2009) Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering. Tissue Eng Pt A 15(10):3151–3159CrossRef Li YC, Xiong JY, Wong CS, Hodgson PD, Wen C (2009) Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering. Tissue Eng Pt A 15(10):3151–3159CrossRef
52.
Zurück zum Zitat Motemani Y, Kadletz PM, Maier B, et al. (2015) Microstructure, shape memory effect and functional stability of Ti67Ta33 thin films. Adv Eng Mater 17(10):1425-1433 Motemani Y, Kadletz PM, Maier B, et al. (2015) Microstructure, shape memory effect and functional stability of Ti67Ta33 thin films. Adv Eng Mater 17(10):1425-1433
53.
Zurück zum Zitat Motemani Y, Buenconsejo PJS, Craciunescu C, Ludwig A (2014) High-temperature shape memory effect in Ti-Ta thin films sputter deposited at room temperature. Adv Mater Interfaces 1(3):140019CrossRef Motemani Y, Buenconsejo PJS, Craciunescu C, Ludwig A (2014) High-temperature shape memory effect in Ti-Ta thin films sputter deposited at room temperature. Adv Mater Interfaces 1(3):140019CrossRef
54.
Zurück zum Zitat Sikka SK, Vohra YK, Chidambaram R (1982) Omega-phase in materials. Prog Mater Sci 27(3–4):245–310CrossRef Sikka SK, Vohra YK, Chidambaram R (1982) Omega-phase in materials. Prog Mater Sci 27(3–4):245–310CrossRef
55.
Zurück zum Zitat Hickman BS (1968) Omega phase precipitation in titanium alloys. J Met 20(8):A121 Hickman BS (1968) Omega phase precipitation in titanium alloys. J Met 20(8):A121
56.
Zurück zum Zitat Ohmori Y, Ogo T, Nakai K, Kobayashi S (2001) Effects of ω-phase precipitation on beta → α, α ‘ transformations in a metastable β titanium alloy. Mater Sci Eng, A 312(1–2):182–188CrossRef Ohmori Y, Ogo T, Nakai K, Kobayashi S (2001) Effects of ω-phase precipitation on beta → α, α ‘ transformations in a metastable β titanium alloy. Mater Sci Eng, A 312(1–2):182–188CrossRef
57.
Zurück zum Zitat Lai MJ, Tasan CC, Zhang J, Grabowski B, Huang LF, Raabe D (2015) Origin of shear induced β to ω transition in Ti–Nb-based alloys. Acta Mater 92:55–63CrossRef Lai MJ, Tasan CC, Zhang J, Grabowski B, Huang LF, Raabe D (2015) Origin of shear induced β to ω transition in Ti–Nb-based alloys. Acta Mater 92:55–63CrossRef
58.
Zurück zum Zitat Banerjee S, Tewari R, Dey GK (2006) Omega phase transformation—morphologies and mechanisms. Int J Mater Res 97(7):963–977CrossRef Banerjee S, Tewari R, Dey GK (2006) Omega phase transformation—morphologies and mechanisms. Int J Mater Res 97(7):963–977CrossRef
59.
Zurück zum Zitat Li T, Kent D, Sha G, Dargusch MS, Cairney JM (2015) The mechanism of ω-assisted α phase formation in near β-Ti alloys. Scr Mater 104:75–78CrossRef Li T, Kent D, Sha G, Dargusch MS, Cairney JM (2015) The mechanism of ω-assisted α phase formation in near β-Ti alloys. Scr Mater 104:75–78CrossRef
60.
Zurück zum Zitat Prima F et al (2000) ω precipitation in a beta metastable titanium alloy, resistometric study. Mater Trans, JIM 41(8):1092–1097CrossRef Prima F et al (2000) ω precipitation in a beta metastable titanium alloy, resistometric study. Mater Trans, JIM 41(8):1092–1097CrossRef
61.
Zurück zum Zitat Li T, Kent D, Sha G et al (2016) New insights into the phase transformations to isothermal ω and ω-assisted α in near β-Ti alloys. Acta Mater 106:353–366CrossRef Li T, Kent D, Sha G et al (2016) New insights into the phase transformations to isothermal ω and ω-assisted α in near β-Ti alloys. Acta Mater 106:353–366CrossRef
62.
Zurück zum Zitat Collings EW (1975) Magnetic studies of omega-phase precipitation and aging in titanium-vanadium alloys. J Less Common Met 39(1):63–90CrossRef Collings EW (1975) Magnetic studies of omega-phase precipitation and aging in titanium-vanadium alloys. J Less Common Met 39(1):63–90CrossRef
63.
Zurück zum Zitat Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MFX, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458CrossRef Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MFX, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458CrossRef
64.
Zurück zum Zitat Lutterotti L (2010) Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nucl Instrum Methods B 268(3–4):334–340CrossRef Lutterotti L (2010) Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nucl Instrum Methods B 268(3–4):334–340CrossRef
65.
Zurück zum Zitat Lutterotti L, Gualtieri A, Aldrighetti S (1996) Rietveld refinement using Debye-Scherrer film techniques. Eur Powder Differ 228:29–34 Lutterotti L, Gualtieri A, Aldrighetti S (1996) Rietveld refinement using Debye-Scherrer film techniques. Eur Powder Differ 228:29–34
66.
Zurück zum Zitat Dippel AC, Liermann HP, Delitz JT (2015) Beamline P02. 1 at PETRA III for high‐resolution and high‐energy powder diffraction. J Synchrotron Radiat 22(3):675–687CrossRef Dippel AC, Liermann HP, Delitz JT (2015) Beamline P02. 1 at PETRA III for high‐resolution and high‐energy powder diffraction. J Synchrotron Radiat 22(3):675–687CrossRef
67.
Zurück zum Zitat Paulsen A (2019) Herstellung, Eigenschaften und Phastenstabilitäten von Hochtemperaturformgedächtnislegierungen auf Basis von Ti-Ta. Thesis, Ruhr-Universität Bochum, Bochum Paulsen A (2019) Herstellung, Eigenschaften und Phastenstabilitäten von Hochtemperaturformgedächtnislegierungen auf Basis von Ti-Ta. Thesis, Ruhr-Universität Bochum, Bochum
68.
Zurück zum Zitat Feeney JA, Blackburn MJ (1970) Effect of microstructure on the strength, toughness, and stress-corrosion cracking susceptibility of a metastable beta titanium alloy (Ti−11.5 Mo−6Zr−4.5 Sn). Metall Trans 1(12):3309–3323 Feeney JA, Blackburn MJ (1970) Effect of microstructure on the strength, toughness, and stress-corrosion cracking susceptibility of a metastable beta titanium alloy (Ti−11.5 Mo−6Zr−4.5 Sn). Metall Trans 1(12):3309–3323
69.
Zurück zum Zitat Rhodes CG, Williams JC (1975) The precipitation of α-phase in metastable β-phase Ti alloys. Metall Trans A 6(11):2103–2114CrossRef Rhodes CG, Williams JC (1975) The precipitation of α-phase in metastable β-phase Ti alloys. Metall Trans A 6(11):2103–2114CrossRef
70.
Zurück zum Zitat Williams J, Hickman B, Leslie D (1971) The effect of ternary additions on the decompositon of metastable beta-phase titanium alloys. Metall Trans 2(2):477–484CrossRef Williams J, Hickman B, Leslie D (1971) The effect of ternary additions on the decompositon of metastable beta-phase titanium alloys. Metall Trans 2(2):477–484CrossRef
71.
Zurück zum Zitat Chen F, Xu G, Zhang X, Zhou K (2017) Isothermal kinetics of β↔ α transformation in Ti-55531 alloy influenced by phase composition and microstructure. Mater Des 130:302–316CrossRef Chen F, Xu G, Zhang X, Zhou K (2017) Isothermal kinetics of β↔ α transformation in Ti-55531 alloy influenced by phase composition and microstructure. Mater Des 130:302–316CrossRef
72.
Zurück zum Zitat Bönisch M, Panigrahi A, Calin M et al (2017) Thermal stability and latent heat of Nb–rich martensitic Ti-Nb alloys. J Alloy Compd 697:300–309CrossRef Bönisch M, Panigrahi A, Calin M et al (2017) Thermal stability and latent heat of Nb–rich martensitic Ti-Nb alloys. J Alloy Compd 697:300–309CrossRef
73.
Zurück zum Zitat Aeby-Gautier E, Bruneseaux F, Da Costa Teixeira J, Appolaire B, Geandier G, Denis S (2007) Microstructural formation in Ti alloys: in-situ characterization of phase transformation kinetics. JOM 59(1):54–58CrossRef Aeby-Gautier E, Bruneseaux F, Da Costa Teixeira J, Appolaire B, Geandier G, Denis S (2007) Microstructural formation in Ti alloys: in-situ characterization of phase transformation kinetics. JOM 59(1):54–58CrossRef
74.
Zurück zum Zitat Hui Q, Xue XY, Kou HC, Lai MJ, Tang B, Li JS (2013) Kinetics of the omega phase transformation of Ti-7333 titanium alloy during continuous heating. J Mater Sci 48(5):1966–1972CrossRef Hui Q, Xue XY, Kou HC, Lai MJ, Tang B, Li JS (2013) Kinetics of the omega phase transformation of Ti-7333 titanium alloy during continuous heating. J Mater Sci 48(5):1966–1972CrossRef
75.
Zurück zum Zitat Wahlbeck PG, Gilles PW (1966) Reinvestigation of the phase diagram for the system titanium-oxygen. J Am Ceram Soc 49(4):180–183CrossRef Wahlbeck PG, Gilles PW (1966) Reinvestigation of the phase diagram for the system titanium-oxygen. J Am Ceram Soc 49(4):180–183CrossRef
76.
Zurück zum Zitat Ikeda M, Komatsu S-Y, Nakamura Y (2002) The effect of Ta content on phase constitution and aging behavior of Ti-Ta binary alloys. Mater Trans 43(12):2984–2990CrossRef Ikeda M, Komatsu S-Y, Nakamura Y (2002) The effect of Ta content on phase constitution and aging behavior of Ti-Ta binary alloys. Mater Trans 43(12):2984–2990CrossRef
77.
Zurück zum Zitat Ikeda M, Komatsu S-Y, Nakamura Y (2004) Effects of Sn and Zr additions on phase constitution and aging behavior of Ti-50 mass% Ta alloys quenched from β single phase region. Mater Trans 45(4):1106–1112CrossRef Ikeda M, Komatsu S-Y, Nakamura Y (2004) Effects of Sn and Zr additions on phase constitution and aging behavior of Ti-50 mass% Ta alloys quenched from β single phase region. Mater Trans 45(4):1106–1112CrossRef
78.
Zurück zum Zitat Barzilai S, Toher C, Curtarolo S, Levy O (2016) Evaluation of the tantalum-titanium phase diagram from ab-initio calculations. Acta Mater 120:255–263CrossRef Barzilai S, Toher C, Curtarolo S, Levy O (2016) Evaluation of the tantalum-titanium phase diagram from ab-initio calculations. Acta Mater 120:255–263CrossRef
79.
Zurück zum Zitat Kadletz PM, Motemani Y, Iannotta J et al (2018) Crystallographic structure analysis of a Ti–Ta thin film materials library fabricated by combinatorial magnetron sputtering. ACS Comb Sci 20(3):137–150CrossRef Kadletz PM, Motemani Y, Iannotta J et al (2018) Crystallographic structure analysis of a Ti–Ta thin film materials library fabricated by combinatorial magnetron sputtering. ACS Comb Sci 20(3):137–150CrossRef
Metadaten
Titel
A Kinetic Study on the Evolution of Martensitic Transformation Behavior and Microstructures in Ti–Ta High-Temperature Shape-Memory Alloys During Aging
verfasst von
Alexander Paulsen
Jan Frenzel
Dennis Langenkämper
Ramona Rynko
Peter Kadletz
Lukas Grossmann
Wolfgang W. Schmahl
Christoph Somsen
Gunther Eggeler
Publikationsdatum
01.03.2019
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 1/2019
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-018-00200-7

Weitere Artikel der Ausgabe 1/2019

Shape Memory and Superelasticity 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.