Skip to main content

2025 | OriginalPaper | Buchkapitel

A Knowledge Transfer-Based Bees Algorithm for Expert Team Formation Problem in Internet Company

verfasst von : Yanjie Song, Yangyang Guo, Jiting Li, Jian Wu, Qinwen Yang, Yingwu Chen

Erschienen in: Intelligent Engineering Optimisation with the Bees Algorithm

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

How to build a team of experts plays an important role in the smooth development of a new project. The Internet company was investigated to determine how to form a team that can communicate effectively. This problem is known as the problem of expert team formation in Internet companies (TFPICs). We construct a mathematical optimisation model based on an undirected graph and propose a bees algorithm using knowledge transfer, named KT-BA. KT-BA uses the best information obtained through cooperative search of multiple subpopulations and transfers the dominant subpopulations to other subpopulations. A reproduction mechanism is also used in the algorithm to generate new individuals to enhance population diversity. The experimental results verify the solution performance of KT-BA, and the obtained expert team formation scheme outperforms the traditional bees algorithm and neighbourhood search algorithm. Thus, KT-BA is suitable for application in large Internet companies to provide scientific decisions for project development.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Anagnostopoulos A, Becchetti L, Castillo C, Gionis A, Leonardi S (2012) Online team formation in social networks. In: Proceedings of the 21st international conference on World Wide Web, pp 839–848 Anagnostopoulos A, Becchetti L, Castillo C, Gionis A, Leonardi S (2012) Online team formation in social networks. In: Proceedings of the 21st international conference on World Wide Web, pp 839–848
2.
3.
Zurück zum Zitat Flores-Parra JM, Castañón-Puga M, Evans RD, Rosales-Cisneros R, Gaxiola-Pacheco C (2018) Towards team formation using Belbin role types and a social networks analysis approach. In: 2018 IEEE technology and engineering management conference (TEMSCON). IEEE, pp 1–6 Flores-Parra JM, Castañón-Puga M, Evans RD, Rosales-Cisneros R, Gaxiola-Pacheco C (2018) Towards team formation using Belbin role types and a social networks analysis approach. In: 2018 IEEE technology and engineering management conference (TEMSCON). IEEE, pp 1–6
4.
Zurück zum Zitat Keane P, Ghaffar F, Malone D (2020) Using machine learning to predict links and improve Steiner tree solutions to team formation problems-a cross company study. Appl Net Sci 5(1):1–19 Keane P, Ghaffar F, Malone D (2020) Using machine learning to predict links and improve Steiner tree solutions to team formation problems-a cross company study. Appl Net Sci 5(1):1–19
5.
Zurück zum Zitat Bachrach Y, Everett R, Hughes E, Lazaridou A, Leibo JZ, Lanctot M, Graepel T (2020) Negotiating team formation using deep reinforcement learning. Artif Intell 288:103356MathSciNetCrossRef Bachrach Y, Everett R, Hughes E, Lazaridou A, Leibo JZ, Lanctot M, Graepel T (2020) Negotiating team formation using deep reinforcement learning. Artif Intell 288:103356MathSciNetCrossRef
6.
Zurück zum Zitat Rahmanniyay F, Yu AJ, Seif J (2019) A multi-objective multi-stage stochastic model for project team formation under uncertainty in time requirements. Comput Ind Eng 132:153–165CrossRef Rahmanniyay F, Yu AJ, Seif J (2019) A multi-objective multi-stage stochastic model for project team formation under uncertainty in time requirements. Comput Ind Eng 132:153–165CrossRef
7.
Zurück zum Zitat El-Ashmawi WH, Ali AF, Tawhid MA (2019) An improved particle swarm optimization with a new swap operator for team formation problem. J Ind Eng Int 15(1):53–71CrossRef El-Ashmawi WH, Ali AF, Tawhid MA (2019) An improved particle swarm optimization with a new swap operator for team formation problem. J Ind Eng Int 15(1):53–71CrossRef
8.
Zurück zum Zitat Gutiérrez JH, Astudillo CA, Ballesteros-Pérez P, Mora-Melià D, Candia-Véjar A (2016) The multiple team formation problem using sociometry. Comput Oper Res 75:150–162MathSciNetCrossRef Gutiérrez JH, Astudillo CA, Ballesteros-Pérez P, Mora-Melià D, Candia-Véjar A (2016) The multiple team formation problem using sociometry. Comput Oper Res 75:150–162MathSciNetCrossRef
9.
Zurück zum Zitat Selvarajah K, Zadeh PM, Kobti Z, Palanichamy Y, Kargar M (2021) A unified framework for effective team formation in social networks. Expert Syst Appl 177:114886CrossRef Selvarajah K, Zadeh PM, Kobti Z, Palanichamy Y, Kargar M (2021) A unified framework for effective team formation in social networks. Expert Syst Appl 177:114886CrossRef
10.
Zurück zum Zitat Gao H, Shi Y, Pun CM, Kwong S (2018) An improved artificial bee colony algorithm with its application. IEEE Trans Industr Inf 15(4):1853–1865CrossRef Gao H, Shi Y, Pun CM, Kwong S (2018) An improved artificial bee colony algorithm with its application. IEEE Trans Industr Inf 15(4):1853–1865CrossRef
11.
Zurück zum Zitat Zhou J, Yao X, Lin Y, Chan FT, Li Y (2018) An adaptive multi-population differential artificial bee colony algorithm for many-objective service composition in cloud manufacturing. Inf Sci 456:50–82MathSciNetCrossRef Zhou J, Yao X, Lin Y, Chan FT, Li Y (2018) An adaptive multi-population differential artificial bee colony algorithm for many-objective service composition in cloud manufacturing. Inf Sci 456:50–82MathSciNetCrossRef
12.
Zurück zum Zitat Pham DT, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M (2006) The bees algorithm—a novel tool for complex optimisation problems. In: Intelligent production machines and systems. Elsevier Science Ltd, pp 454–459 Pham DT, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M (2006) The bees algorithm—a novel tool for complex optimisation problems. In: Intelligent production machines and systems. Elsevier Science Ltd, pp 454–459
13.
Zurück zum Zitat Vapnik V, Izmailov R (2015) Learning using privileged information: similarity control and knowledge transfer. J Mach Learn Res 16(1):2023–2049MathSciNet Vapnik V, Izmailov R (2015) Learning using privileged information: similarity control and knowledge transfer. J Mach Learn Res 16(1):2023–2049MathSciNet
14.
Zurück zum Zitat Caraveo C, Valdez F, Castillo O (2018) A new optimisation meta-heuristic algorithm based on self-defense mechanism of the plants with three reproduction operators. Soft Comput 22(15):4907–4920CrossRef Caraveo C, Valdez F, Castillo O (2018) A new optimisation meta-heuristic algorithm based on self-defense mechanism of the plants with three reproduction operators. Soft Comput 22(15):4907–4920CrossRef
15.
Zurück zum Zitat Wang Z, Fang X, Li H, Jin H (2020) An improved partheno-genetic algorithm with reproduction mechanism for the multiple traveling salesperson problem. IEEE Access 8:102607–102615CrossRef Wang Z, Fang X, Li H, Jin H (2020) An improved partheno-genetic algorithm with reproduction mechanism for the multiple traveling salesperson problem. IEEE Access 8:102607–102615CrossRef
16.
Zurück zum Zitat Cao Y, Zhang H, Li W, Zhou M, Zhang Y, Chaovalitwongse WA (2018) Comprehensive learning particle swarm optimization algorithm with local search for multimodal functions. IEEE Trans Evol Comput 23(4):718–731CrossRef Cao Y, Zhang H, Li W, Zhou M, Zhang Y, Chaovalitwongse WA (2018) Comprehensive learning particle swarm optimization algorithm with local search for multimodal functions. IEEE Trans Evol Comput 23(4):718–731CrossRef
17.
Zurück zum Zitat Sutharssan T, Stoyanov S, Bailey C, Yin C (2015) Prognostic and health management for engineering systems: a review of the data-driven approach and algorithms. J Eng 2015(7):215–222 Sutharssan T, Stoyanov S, Bailey C, Yin C (2015) Prognostic and health management for engineering systems: a review of the data-driven approach and algorithms. J Eng 2015(7):215–222
Metadaten
Titel
A Knowledge Transfer-Based Bees Algorithm for Expert Team Formation Problem in Internet Company
verfasst von
Yanjie Song
Yangyang Guo
Jiting Li
Jian Wu
Qinwen Yang
Yingwu Chen
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-031-64936-3_15

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.