Skip to main content
Erschienen in: Journal of Material Cycles and Waste Management 4/2021

12.05.2021 | ORIGINAL ARTICLE

A lab fermenter level study on anaerobic hydrogen fermentation using potato peel waste: effect of pH, temperature, and substrate pre-treatment

verfasst von: Khushboo Swapnil Bhurat, Tushar Banerjee, Jitendra Kumar Pandey, Swapnil Sureshchandra Bhurat

Erschienen in: Journal of Material Cycles and Waste Management | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Decades have passed, facing the energy crisis and environmental pollution and researching various possible solutions to tackle them. The use of renewable sources and sustainable development processes is continuously under study to substitute conventional fossil fuels for environmental benefit. Amongst these, hydrogen is thought to be an ideal energy source with almost no hydrocarbon and carbon dioxide emissions and high energy output. Among the hydrogen production techniques, dark fermentation (DF) is a promising option for hydrogen production as it is less costly and has more energy recovery potential. The current study was designed to test the ability of kitchen waste, like potato peels, which is a common waste coming out of kitchens worldwide. The experiment demonstrates that the acidic pH of 4.5 at 40 °C yields maximum hydrogen in the bench-scale batch reactor. Hydrogen production from potato waste feedstock using sewage sludge inoculum has not been reported at this scale before. The actual results and their significance analysis by ANOVA also confirmed that fermentative hydrogen production from waste potato peels using sewage sludge inoculum is possible at a mesophilic temperature in a bench-scale batch fermenter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Antonopoulou G, Gavala HN, Skiadas IV et al (2008) Biofuels generation from sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass. Biores Technol 99:110–119CrossRef Antonopoulou G, Gavala HN, Skiadas IV et al (2008) Biofuels generation from sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass. Biores Technol 99:110–119CrossRef
2.
Zurück zum Zitat Bharathiraja B, Sudharsanaa T, Bharghavi A et al (2016) Biohydrogen and Biogas – An overview on feedstocks and enhancement process. Fuel 185:810–828CrossRef Bharathiraja B, Sudharsanaa T, Bharghavi A et al (2016) Biohydrogen and Biogas – An overview on feedstocks and enhancement process. Fuel 185:810–828CrossRef
3.
Zurück zum Zitat Bhurat KS, Banerjee T, Pandey JK, Belapurkar P (2020) Fermentative bio-hydrogen production using lignocellulosic waste biomass: a review Waste Disposal & Sustainable Energy 2:249-264 doi:https://doi.org/10.1007/s42768-020-00054-9 Bhurat KS, Banerjee T, Pandey JK, Belapurkar P (2020) Fermentative bio-hydrogen production using lignocellulosic waste biomass: a review Waste Disposal & Sustainable Energy 2:249-264 doi:https://​doi.​org/​10.​1007/​s42768-020-00054-9
4.
Zurück zum Zitat Bhurat SS, Pandey S, Chintala V (2021) Combined effect of external mixture formation and cooled exhaust gas recirculation on engine performance and emissions characteristics of partially pre-mixed charged compression ignition engine. Environm Progress Sustain Energy 40:e13470 Bhurat SS, Pandey S, Chintala V (2021) Combined effect of external mixture formation and cooled exhaust gas recirculation on engine performance and emissions characteristics of partially pre-mixed charged compression ignition engine. Environm Progress Sustain Energy 40:e13470
6.
Zurück zum Zitat Cappai G, De Gioannis G, Muntoni A et al. (2015) Effect of inoculum to substrate ratio (ISR) on hydrogen production through dark fermentation of food waste. In: Proceedings of the Fifteenth International Waste Management and Landfill Symposium. CISA Publisher, Italy, S. Margherita di Pula, Cagliari, Italy, pp 5–9 Cappai G, De Gioannis G, Muntoni A et al. (2015) Effect of inoculum to substrate ratio (ISR) on hydrogen production through dark fermentation of food waste. In: Proceedings of the Fifteenth International Waste Management and Landfill Symposium. CISA Publisher, Italy, S. Margherita di Pula, Cagliari, Italy, pp 5–9
7.
Zurück zum Zitat Cappai G, De Gioannis G, Muntoni A et al (2018) Biohydrogen production from food waste: Influence of the inoculum-to-substrate ratio. Sustainability 10:4506CrossRef Cappai G, De Gioannis G, Muntoni A et al (2018) Biohydrogen production from food waste: Influence of the inoculum-to-substrate ratio. Sustainability 10:4506CrossRef
8.
Zurück zum Zitat Cheng J, Lin R, Ding L et al (2015) Fermentative hydrogen and methane cogeneration from cassava residues: effect of pretreatment on structural characterization and fermentation performance. Biores Technol 179:407–413CrossRef Cheng J, Lin R, Ding L et al (2015) Fermentative hydrogen and methane cogeneration from cassava residues: effect of pretreatment on structural characterization and fermentation performance. Biores Technol 179:407–413CrossRef
9.
Zurück zum Zitat Cheng J, Su H, Zhou J et al (2011) Hydrogen production by mixed bacteria through dark and photo fermentation. Int J Hydrogen Energy 36:450–457CrossRef Cheng J, Su H, Zhou J et al (2011) Hydrogen production by mixed bacteria through dark and photo fermentation. Int J Hydrogen Energy 36:450–457CrossRef
10.
Zurück zum Zitat Diamantis VI, Kapagiannidis AG, Ntougias S et al (2014) Two-stage CSTR–UASB digestion enables superior and alkali addition-free cheese whey treatment. Biochem Eng J 84:45–52CrossRef Diamantis VI, Kapagiannidis AG, Ntougias S et al (2014) Two-stage CSTR–UASB digestion enables superior and alkali addition-free cheese whey treatment. Biochem Eng J 84:45–52CrossRef
11.
Zurück zum Zitat Dyundi S, Matolia S, Singla A et al (2019) Review on biodiesel production and emission characteristic of non-edible vegetable oil. IOP conference series. Mater Sci Eng 691:012024 Dyundi S, Matolia S, Singla A et al (2019) Review on biodiesel production and emission characteristic of non-edible vegetable oil. IOP conference series. Mater Sci Eng 691:012024
12.
Zurück zum Zitat Fang HH, Liu H (2002) Effect of pH on hydrogen production from glucose by a mixed culture. Biores Technol 82:87–93CrossRef Fang HH, Liu H (2002) Effect of pH on hydrogen production from glucose by a mixed culture. Biores Technol 82:87–93CrossRef
13.
Zurück zum Zitat Gebrechristos HY, Chen W (2018) Utilization of potato peel as eco-friendly products: A review. Food Sci Nutr 6:1352–1356CrossRef Gebrechristos HY, Chen W (2018) Utilization of potato peel as eco-friendly products: A review. Food Sci Nutr 6:1352–1356CrossRef
14.
Zurück zum Zitat Ghimire A, Frunzo L, Pirozzi F et al (2015) A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl Energy 144:73–95CrossRef Ghimire A, Frunzo L, Pirozzi F et al (2015) A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl Energy 144:73–95CrossRef
15.
Zurück zum Zitat Ghosh D, Hallenbeck PC (2010) Response surface methodology for process parameter optimization of hydrogen yield by the metabolically engineered strain Escherichia coli DJT135. Biores Technol 101:1820–1825CrossRef Ghosh D, Hallenbeck PC (2010) Response surface methodology for process parameter optimization of hydrogen yield by the metabolically engineered strain Escherichia coli DJT135. Biores Technol 101:1820–1825CrossRef
16.
Zurück zum Zitat Girotto F, Lavagnolo MC, Acar G et al (2021) Bio-methane production from tomato pomace: preliminary evaluation of process intensification through ultrasound pre-treatment. J Mater Cycles Waste Manage 23:416–422CrossRef Girotto F, Lavagnolo MC, Acar G et al (2021) Bio-methane production from tomato pomace: preliminary evaluation of process intensification through ultrasound pre-treatment. J Mater Cycles Waste Manage 23:416–422CrossRef
17.
Zurück zum Zitat Gómez-Montoya J-P, Cacua-Madero K-P, Iral-Galeano L et al (2013) Effect of biogas enriched with hydrogen on the operation and performance ofadiesel-biogas dualengine. CT&F-Ciencia, Tecnología y Futuro 5:61–71CrossRef Gómez-Montoya J-P, Cacua-Madero K-P, Iral-Galeano L et al (2013) Effect of biogas enriched with hydrogen on the operation and performance ofadiesel-biogas dualengine. CT&F-Ciencia, Tecnología y Futuro 5:61–71CrossRef
18.
Zurück zum Zitat Gomez-Romero J, Gonzalez-Garcia R, Chairez I et al (2016) Continuous two-staged co-digestion process for biohydrogen production from agro-industrial wastes. Int J Energy Res 40:257–272CrossRef Gomez-Romero J, Gonzalez-Garcia R, Chairez I et al (2016) Continuous two-staged co-digestion process for biohydrogen production from agro-industrial wastes. Int J Energy Res 40:257–272CrossRef
19.
Zurück zum Zitat Han W, Yan Y, Shi Y et al (2016) Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems. Sci Rep 6:38395CrossRef Han W, Yan Y, Shi Y et al (2016) Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems. Sci Rep 6:38395CrossRef
20.
Zurück zum Zitat Hassan GK, Hemdan BA, El-Gohary FA (2020) Utilization of food waste for bio-hydrogen and bio-methane production: influences of temperature, OLR, and in situ aeration. J Mater Cycles Waste Manag 2:1218–1226 Hassan GK, Hemdan BA, El-Gohary FA (2020) Utilization of food waste for bio-hydrogen and bio-methane production: influences of temperature, OLR, and in situ aeration. J Mater Cycles Waste Manag 2:1218–1226
21.
Zurück zum Zitat Júnior ADNF, Wenzel J, Etchebehere C et al (2014) Effect of organic loading rate on hydrogen production from sugarcane vinasse in thermophilic acidogenic packed bed reactors. Int J Hydrogen Energy 39:16852–16862CrossRef Júnior ADNF, Wenzel J, Etchebehere C et al (2014) Effect of organic loading rate on hydrogen production from sugarcane vinasse in thermophilic acidogenic packed bed reactors. Int J Hydrogen Energy 39:16852–16862CrossRef
23.
Zurück zum Zitat Kim DH, Kim SH, Jung KW et al (2011) Effect of initial pH independent of operational pH on hydrogen fermentation of food waste. Biores Technol 102:8646–8652CrossRef Kim DH, Kim SH, Jung KW et al (2011) Effect of initial pH independent of operational pH on hydrogen fermentation of food waste. Biores Technol 102:8646–8652CrossRef
24.
Zurück zum Zitat Kossmann W, Pönitz U (2011) Biogas digest: volume I-biogas basics. In:Information and advisory service on sppropriate technology, vol 1. pp 1-46 Kossmann W, Pönitz U (2011) Biogas digest: volume I-biogas basics. In:Information and advisory service on sppropriate technology, vol 1. pp 1-46
25.
Zurück zum Zitat Kotay SM, Das D (2008) Biohydrogen as a renewable energy resource—prospects and potentials. Int J Hydrogen Energy 33:258–263CrossRef Kotay SM, Das D (2008) Biohydrogen as a renewable energy resource—prospects and potentials. Int J Hydrogen Energy 33:258–263CrossRef
26.
Zurück zum Zitat Lang CA (1958) Simple microdetermination of Kjeldahl nitrogen in biological materials. Anal Chem 30:1692–1694CrossRef Lang CA (1958) Simple microdetermination of Kjeldahl nitrogen in biological materials. Anal Chem 30:1692–1694CrossRef
27.
Zurück zum Zitat Lee K-S, Lin P-J, Chang J-S (2006) Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers. Int J Hydrogen Energy 31:465–472CrossRef Lee K-S, Lin P-J, Chang J-S (2006) Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers. Int J Hydrogen Energy 31:465–472CrossRef
28.
Zurück zum Zitat Li C, Fang HH (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39MathSciNetCrossRef Li C, Fang HH (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39MathSciNetCrossRef
29.
Zurück zum Zitat Liu D, Zeng RJ, Angelidaki I (2008) Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature (70° C). Biotechnol Bioeng 100:1108–1114CrossRef Liu D, Zeng RJ, Angelidaki I (2008) Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature (70° C). Biotechnol Bioeng 100:1108–1114CrossRef
30.
Zurück zum Zitat Lucas CKG (2014) Biogas production from potato peel waste. In: Licenciado em Ciências de Engenharia de Ambiente. Faculdade de Ciências e Tecnologia Lucas CKG (2014) Biogas production from potato peel waste. In: Licenciado em Ciências de Engenharia de Ambiente. Faculdade de Ciências e Tecnologia
31.
Zurück zum Zitat Luo G, Karakashev D, Xie L et al (2011) Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: Homoacetogenesis and methanogenesis as competitors to hydrogen production. Biotechnol Bioeng 108:1816–1827CrossRef Luo G, Karakashev D, Xie L et al (2011) Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: Homoacetogenesis and methanogenesis as competitors to hydrogen production. Biotechnol Bioeng 108:1816–1827CrossRef
32.
Zurück zum Zitat Malaspina F, Cellamare CM, Stante L et al (1996) Anaerobic treatment of cheese whey with a downflow-upflow hybrid reactor. Biores Technol 55:131–139CrossRef Malaspina F, Cellamare CM, Stante L et al (1996) Anaerobic treatment of cheese whey with a downflow-upflow hybrid reactor. Biores Technol 55:131–139CrossRef
33.
Zurück zum Zitat Martinat S, Navratil J, Trojan J et al (2017) Interpreting regional and local diversities of the social acceptance of agricultural AD plants in the rural space of the Moravian-Silesian Region (Czech Republic). Rendiconti Lincei 28:535–548CrossRef Martinat S, Navratil J, Trojan J et al (2017) Interpreting regional and local diversities of the social acceptance of agricultural AD plants in the rural space of the Moravian-Silesian Region (Czech Republic). Rendiconti Lincei 28:535–548CrossRef
34.
Zurück zum Zitat Morra S, Valetti F, Gilardi G (2017) [FeFe]-hydrogenases as biocatalysts in bio-hydrogen production. Rendiconti Lincei 28:183–194CrossRef Morra S, Valetti F, Gilardi G (2017) [FeFe]-hydrogenases as biocatalysts in bio-hydrogen production. Rendiconti Lincei 28:183–194CrossRef
35.
Zurück zum Zitat Mu Y, Zheng X-J, Yu H-Q et al (2006) Biological hydrogen production by anaerobic sludge at various temperatures. Int J Hydrogen Energy 31:780–785CrossRef Mu Y, Zheng X-J, Yu H-Q et al (2006) Biological hydrogen production by anaerobic sludge at various temperatures. Int J Hydrogen Energy 31:780–785CrossRef
36.
Zurück zum Zitat Noblecourt A, Christophe G, Larroche C et al (2018) Hydrogen production by dark fermentation from pre-fermented depackaging food wastes. Biores Technol 247:864–870CrossRef Noblecourt A, Christophe G, Larroche C et al (2018) Hydrogen production by dark fermentation from pre-fermented depackaging food wastes. Biores Technol 247:864–870CrossRef
37.
Zurück zum Zitat Okamoto M, Miyahara T, Mizuno O et al (2000) Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci Technol 41:25–32CrossRef Okamoto M, Miyahara T, Mizuno O et al (2000) Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci Technol 41:25–32CrossRef
38.
Zurück zum Zitat Remón J, García L, Arauzo J (2016) Cheese whey management by catalytic steam reforming and aqueous phase reforming. Fuel Process Technol 154:66–81CrossRef Remón J, García L, Arauzo J (2016) Cheese whey management by catalytic steam reforming and aqueous phase reforming. Fuel Process Technol 154:66–81CrossRef
39.
Zurück zum Zitat Rice EW, Baird RB, Eaton AD (1915) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, Water Environment Federation Rice EW, Baird RB, Eaton AD (1915) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, Water Environment Federation
40.
Zurück zum Zitat Singh A, Sevda S, Abu Reesh I et al (2015) Biohydrogen Production from Lignocellulosic Biomass: Technology and Sustainability. Energies 8:13062–13080CrossRef Singh A, Sevda S, Abu Reesh I et al (2015) Biohydrogen Production from Lignocellulosic Biomass: Technology and Sustainability. Energies 8:13062–13080CrossRef
41.
Zurück zum Zitat Vidal G, Carvalho A, Méndez R et al (2000) Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. Biores Technol 74:231–239CrossRef Vidal G, Carvalho A, Méndez R et al (2000) Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. Biores Technol 74:231–239CrossRef
42.
Zurück zum Zitat Wang J, Wan W (2008) Effect of temperature on fermentative hydrogen production by mixed cultures. Int J Hydrogen Energy 33:5392–5397CrossRef Wang J, Wan W (2008) Effect of temperature on fermentative hydrogen production by mixed cultures. Int J Hydrogen Energy 33:5392–5397CrossRef
43.
Zurück zum Zitat Wang X, Zhao Y-C (2009) A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process. Int J Hydrogen Energy 34:245–254CrossRef Wang X, Zhao Y-C (2009) A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process. Int J Hydrogen Energy 34:245–254CrossRef
44.
Zurück zum Zitat Wu D (2016) Recycle technology for potato peel waste processing: a review. Procedia Environ Sci 31:103–107CrossRef Wu D (2016) Recycle technology for potato peel waste processing: a review. Procedia Environ Sci 31:103–107CrossRef
45.
Zurück zum Zitat Yang G, Wang J (2018) Pretreatment of grass waste using combined ionizing radiation-acid treatment for enhancing fermentative hydrogen production. Biores Technol 255:7–15CrossRef Yang G, Wang J (2018) Pretreatment of grass waste using combined ionizing radiation-acid treatment for enhancing fermentative hydrogen production. Biores Technol 255:7–15CrossRef
46.
Zurück zum Zitat Yu H-Q, Fang HHP (2002) Acidogenesis of dairy wastewater at various pH levels. Water Sci Technol 45:201–206CrossRef Yu H-Q, Fang HHP (2002) Acidogenesis of dairy wastewater at various pH levels. Water Sci Technol 45:201–206CrossRef
47.
Zurück zum Zitat Zhen X, Zhang X, Li S et al (2020) Effect of micro-oxygen pretreatment on gas production characteristics of anaerobic digestion of kitchen waste. J Mater Cycles Waste Manage 22:1852–1858CrossRef Zhen X, Zhang X, Li S et al (2020) Effect of micro-oxygen pretreatment on gas production characteristics of anaerobic digestion of kitchen waste. J Mater Cycles Waste Manage 22:1852–1858CrossRef
Metadaten
Titel
A lab fermenter level study on anaerobic hydrogen fermentation using potato peel waste: effect of pH, temperature, and substrate pre-treatment
verfasst von
Khushboo Swapnil Bhurat
Tushar Banerjee
Jitendra Kumar Pandey
Swapnil Sureshchandra Bhurat
Publikationsdatum
12.05.2021
Verlag
Springer Japan
Erschienen in
Journal of Material Cycles and Waste Management / Ausgabe 4/2021
Print ISSN: 1438-4957
Elektronische ISSN: 1611-8227
DOI
https://doi.org/10.1007/s10163-021-01242-3

Weitere Artikel der Ausgabe 4/2021

Journal of Material Cycles and Waste Management 4/2021 Zur Ausgabe