Skip to main content
Erschienen in: Engineering with Computers 4/2017

17.03.2017 | Original Article

A local meshless method for solving multi-dimensional Vlasov–Poisson and Vlasov–Poisson–Fokker–Planck systems arising in plasma physics

verfasst von: Mehdi Dehghan, Mostafa Abbaszadeh

Erschienen in: Engineering with Computers | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we use a linear combination of the shape functions of reproducing kernel particle method (RKPM) and RBFs for achieving the unknown weights into each stencil. We obtain an error bound for the new shape function. Also, in this paper, we investigate a numerical procedure based on the presented technique for solving the Vlasov–Poisson and Vlasov–Poisson–Fokker–Planck systems. The Vlasov equation is a differential equation describing time evolution of the distribution function of plasma. The Vlasov–Poisson equations are used to describe various phenomena in plasma, in particular Landau damping and the distributions in a double layer plasma. We use the RKPM/RBF-FD technique for discretization of space direction and employ the method of lines to achieve a high-order accuracy in temporal direction. Numerical examples are reported which demonstrate the theoretical results and the efficiency of proposed scheme.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Acebron JA, Rodriguez-Rozas A (2013) Highly efficient numerical algorithm based on random trees for accelerating parallel Vlasov–Poisson simulations. J Comput Phys 250:224–245MathSciNetCrossRefMATH Acebron JA, Rodriguez-Rozas A (2013) Highly efficient numerical algorithm based on random trees for accelerating parallel Vlasov–Poisson simulations. J Comput Phys 250:224–245MathSciNetCrossRefMATH
2.
Zurück zum Zitat Back A, Sonnendrcker E (2014) Finite Element Hodge for spline discrete differential forms. Application to the Vlasov–Poisson system. Appl Numer Math 79:124–136MathSciNetCrossRefMATH Back A, Sonnendrcker E (2014) Finite Element Hodge for spline discrete differential forms. Application to the Vlasov–Poisson system. Appl Numer Math 79:124–136MathSciNetCrossRefMATH
3.
Zurück zum Zitat Barbieri E, Meo M (2012) A fast object-oriented Matlab implementation of the reproducing kernel particle method. Comput Mech 49:581–602MathSciNetCrossRefMATH Barbieri E, Meo M (2012) A fast object-oriented Matlab implementation of the reproducing kernel particle method. Comput Mech 49:581–602MathSciNetCrossRefMATH
4.
Zurück zum Zitat Barre J, Metivier D, Yamaguchi YY (2016) Trapping scaling for bifurcations in the Vlasov systems. Phys. Rev. E 93:042207CrossRef Barre J, Metivier D, Yamaguchi YY (2016) Trapping scaling for bifurcations in the Vlasov systems. Phys. Rev. E 93:042207CrossRef
5.
Zurück zum Zitat Barre J, Yamaguchi YY (2015) On the neighborhood of an inhomogeneous stable stationary solution of the Vlasov equation—case of an attractive cosine potential. 56:081502 Barre J, Yamaguchi YY (2015) On the neighborhood of an inhomogeneous stable stationary solution of the Vlasov equation—case of an attractive cosine potential. 56:081502
6.
Zurück zum Zitat Bayona V, Moscoso M, Kindelan M (2012) Gaussian RBF-FD weights and its corresponding local truncation errors. Eng Anal Bound Elem 36:1361–1369MathSciNetCrossRefMATH Bayona V, Moscoso M, Kindelan M (2012) Gaussian RBF-FD weights and its corresponding local truncation errors. Eng Anal Bound Elem 36:1361–1369MathSciNetCrossRefMATH
7.
Zurück zum Zitat Bayona V, Moscoso M, Kindelan M (2012) Optimal variable shape parameter for multiquadric based RBF-FD method. J Comput Phys 231:2466–2481MathSciNetCrossRefMATH Bayona V, Moscoso M, Kindelan M (2012) Optimal variable shape parameter for multiquadric based RBF-FD method. J Comput Phys 231:2466–2481MathSciNetCrossRefMATH
8.
Zurück zum Zitat Bayona V, Moscoso M, Kindelan M (2011) Optimal constant shape parameter for multiquadric based RBF-FD method. J Comput Phys 230(19):7384–7399MathSciNetCrossRefMATH Bayona V, Moscoso M, Kindelan M (2011) Optimal constant shape parameter for multiquadric based RBF-FD method. J Comput Phys 230(19):7384–7399MathSciNetCrossRefMATH
9.
Zurück zum Zitat Bayona V, Moscoso M, Carretero M, Kindelan M (2010) RBF-FD formulas and convergence properties. J Comput Phys 229:8281–8295CrossRefMATH Bayona V, Moscoso M, Carretero M, Kindelan M (2010) RBF-FD formulas and convergence properties. J Comput Phys 229:8281–8295CrossRefMATH
10.
Zurück zum Zitat Bollig EF, Flyer N, Erlebacher G (2012) Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs. J Comput Phys 231:7133–7151MathSciNetCrossRef Bollig EF, Flyer N, Erlebacher G (2012) Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs. J Comput Phys 231:7133–7151MathSciNetCrossRef
11.
Zurück zum Zitat Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge University Press, CambridgeCrossRefMATH Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge University Press, CambridgeCrossRefMATH
12.
13.
Zurück zum Zitat Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Comput Methods Appl Mech Eng 139:195–227CrossRefMATH Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Comput Methods Appl Mech Eng 139:195–227CrossRefMATH
14.
Zurück zum Zitat Cheng Y, Rossmanith JA (2014) A class of quadrature-based moment-closure methods with application to the Vlasov–Poisson–Fokker–Planck system in the high-field limit. J Comput Appl Math 262:384–398MathSciNetCrossRefMATH Cheng Y, Rossmanith JA (2014) A class of quadrature-based moment-closure methods with application to the Vlasov–Poisson–Fokker–Planck system in the high-field limit. J Comput Appl Math 262:384–398MathSciNetCrossRefMATH
15.
Zurück zum Zitat Cheng Y, Gamba IM (2012) Numerical study of one-dimensional Vlasov–Poisson equations for infinite homogeneous stellar systems. Commun Nonlinear Sci Numer Simul 17:2052–2061MathSciNetCrossRefMATH Cheng Y, Gamba IM (2012) Numerical study of one-dimensional Vlasov–Poisson equations for infinite homogeneous stellar systems. Commun Nonlinear Sci Numer Simul 17:2052–2061MathSciNetCrossRefMATH
16.
Zurück zum Zitat Cheng R, Liew KM (2009) The reproducing kernel particle method for two-dimensional unsteady heat conduction problems. Comput Mech 45:1–10MathSciNetCrossRefMATH Cheng R, Liew KM (2009) The reproducing kernel particle method for two-dimensional unsteady heat conduction problems. Comput Mech 45:1–10MathSciNetCrossRefMATH
18.
Zurück zum Zitat Cheng R, Ge H (2008) The meshless method for a two-dimensional parabolic problem with a source parameter. Appl Math Comput 202:730–737MathSciNetMATH Cheng R, Ge H (2008) The meshless method for a two-dimensional parabolic problem with a source parameter. Appl Math Comput 202:730–737MathSciNetMATH
20.
Zurück zum Zitat Dehghan M (2005) On the solution of an initial boundary value problem that combines Neumann and integral condition for the wave equation. Numer Methods Partial Differ Equ 21:24–40MathSciNetCrossRefMATH Dehghan M (2005) On the solution of an initial boundary value problem that combines Neumann and integral condition for the wave equation. Numer Methods Partial Differ Equ 21:24–40MathSciNetCrossRefMATH
21.
Zurück zum Zitat Dehghan M, Salehi R (2012) The numerical solution of the non-linear integro-differential equations based on the meshless method. J Comput Appl Math 236:2367–2377MathSciNetCrossRefMATH Dehghan M, Salehi R (2012) The numerical solution of the non-linear integro-differential equations based on the meshless method. J Comput Appl Math 236:2367–2377MathSciNetCrossRefMATH
22.
Zurück zum Zitat Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phys Commun 181:772–786MathSciNetCrossRefMATH Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phys Commun 181:772–786MathSciNetCrossRefMATH
23.
Zurück zum Zitat Dehghan M, Shokri A (2009) Numerical solution of the nonlinear Klein–Gordon equation using radial basis functions. J Comput Appl Math 230:400–410MathSciNetCrossRefMATH Dehghan M, Shokri A (2009) Numerical solution of the nonlinear Klein–Gordon equation using radial basis functions. J Comput Appl Math 230:400–410MathSciNetCrossRefMATH
24.
Zurück zum Zitat Dehghan M, Shokri A (2008) A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math Comput Simul 79:700–715MathSciNetCrossRefMATH Dehghan M, Shokri A (2008) A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math Comput Simul 79:700–715MathSciNetCrossRefMATH
25.
Zurück zum Zitat Dehghan M, Shakeri F (2009) Method of lines solutions of the parabolic inverse problem with an overspecification at a point. Numer Algorithms 50:417–437MathSciNetCrossRefMATH Dehghan M, Shakeri F (2009) Method of lines solutions of the parabolic inverse problem with an overspecification at a point. Numer Algorithms 50:417–437MathSciNetCrossRefMATH
26.
Zurück zum Zitat Dehghan M, Mohammadi V (2015) The method of variably scaled radial kernels for solving two-dimensional magnetohydrodynamic (MHD) equations using two discretizations: the Crank–Nicolson scheme and the method of lines (MOL). Comput Math Appl 70:2292–2315MathSciNetCrossRef Dehghan M, Mohammadi V (2015) The method of variably scaled radial kernels for solving two-dimensional magnetohydrodynamic (MHD) equations using two discretizations: the Crank–Nicolson scheme and the method of lines (MOL). Comput Math Appl 70:2292–2315MathSciNetCrossRef
27.
Zurück zum Zitat Duclous R, Dubroca B, Filbet F (2012) Analysis of a high order finite volume scheme for the Vlasov–Poisson system. Discret Contin Dyn S-Series S (DCDS-S) 5:283–305MathSciNetMATH Duclous R, Dubroca B, Filbet F (2012) Analysis of a high order finite volume scheme for the Vlasov–Poisson system. Discret Contin Dyn S-Series S (DCDS-S) 5:283–305MathSciNetMATH
28.
Zurück zum Zitat Driscoll TA, Fornberg B (2002) Interpolation in the limit of increasingly flat radial basis functions. Comput Math Appl 43:413–422MathSciNetCrossRefMATH Driscoll TA, Fornberg B (2002) Interpolation in the limit of increasingly flat radial basis functions. Comput Math Appl 43:413–422MathSciNetCrossRefMATH
29.
Zurück zum Zitat Einkemmer L, Ostermann A (2014) Convergence analysis of strang splitting for Vlasov-type equations. SIAM J Numer Anal 52(1):140–155MathSciNetCrossRefMATH Einkemmer L, Ostermann A (2014) Convergence analysis of strang splitting for Vlasov-type equations. SIAM J Numer Anal 52(1):140–155MathSciNetCrossRefMATH
30.
Zurück zum Zitat Fasshauer GE (2007) Meshfree approximation methods with MATLAB. World Scientific, USACrossRefMATH Fasshauer GE (2007) Meshfree approximation methods with MATLAB. World Scientific, USACrossRefMATH
31.
Zurück zum Zitat Flyer N, Lehto E, Blaise S, Wright GB, St-Cyr A (2012) A guide to RBF-generated finite differences for nonlinear transport: shallow water simulations on a sphere. J Comput Phys 231:4078–4095MathSciNetCrossRefMATH Flyer N, Lehto E, Blaise S, Wright GB, St-Cyr A (2012) A guide to RBF-generated finite differences for nonlinear transport: shallow water simulations on a sphere. J Comput Phys 231:4078–4095MathSciNetCrossRefMATH
35.
36.
Zurück zum Zitat Filbet F, Rodrigues LM (2016) Asymptotically stable particle-in-cell methods for the Vlasov–Poisson system with a strong external magnetic field. SIAM J Numer Anal 54(2):1120–1146MathSciNetCrossRefMATH Filbet F, Rodrigues LM (2016) Asymptotically stable particle-in-cell methods for the Vlasov–Poisson system with a strong external magnetic field. SIAM J Numer Anal 54(2):1120–1146MathSciNetCrossRefMATH
37.
Zurück zum Zitat Fornberg B, Lehto E (2011) Stabilization of RBF-generated finite difference methods for convective PDEs. J Comput Phys 230:2270–2285MathSciNetCrossRefMATH Fornberg B, Lehto E (2011) Stabilization of RBF-generated finite difference methods for convective PDEs. J Comput Phys 230:2270–2285MathSciNetCrossRefMATH
38.
39.
Zurück zum Zitat Geng FZ, Qian SP (2015) Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl Math Model 39:5592–5597MathSciNetCrossRef Geng FZ, Qian SP (2015) Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl Math Model 39:5592–5597MathSciNetCrossRef
40.
Zurück zum Zitat Gonzalez-Rodriguez P, Bayona V, Moscoso M, Kindelan M (2015) Laurent series based RBF-FD method to avoid ill-conditioning. Eng Anal Bound Elem 52:24–31MathSciNetCrossRef Gonzalez-Rodriguez P, Bayona V, Moscoso M, Kindelan M (2015) Laurent series based RBF-FD method to avoid ill-conditioning. Eng Anal Bound Elem 52:24–31MathSciNetCrossRef
41.
Zurück zum Zitat Güçlü Y, Christlieb AJ, Hitchon WNG (2014) Arbitrarily high order convected scheme solution of the Vlasov–Poisson system. J Comput Phys 270:711–752MathSciNetCrossRefMATH Güçlü Y, Christlieb AJ, Hitchon WNG (2014) Arbitrarily high order convected scheme solution of the Vlasov–Poisson system. J Comput Phys 270:711–752MathSciNetCrossRefMATH
42.
Zurück zum Zitat Han W, Meng X (2001) Error analysis of the reproducing kernel particle method. Comput Methods Appl Mech Eng 190:6175–6181MathSciNetCrossRef Han W, Meng X (2001) Error analysis of the reproducing kernel particle method. Comput Methods Appl Mech Eng 190:6175–6181MathSciNetCrossRef
43.
Zurück zum Zitat Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76:1705–1915 Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76:1705–1915
44.
Zurück zum Zitat Heath RE, Gamba IM, Morrison PJ, Michler C (2012) A discontinuous Galerkin method for the Vlasov–Poisson system. J Comput Phys 231:1140–1174MathSciNetCrossRefMATH Heath RE, Gamba IM, Morrison PJ, Michler C (2012) A discontinuous Galerkin method for the Vlasov–Poisson system. J Comput Phys 231:1140–1174MathSciNetCrossRefMATH
45.
Zurück zum Zitat Imadera K, Kishimoto Y, Saito D, Li J, Utsumi T (2009) A numerical method for solving the Vlasov–Poisson equation based on the conservative IDO scheme. J Comput Phys 228:8919–8943MathSciNetCrossRefMATH Imadera K, Kishimoto Y, Saito D, Li J, Utsumi T (2009) A numerical method for solving the Vlasov–Poisson equation based on the conservative IDO scheme. J Comput Phys 228:8919–8943MathSciNetCrossRefMATH
46.
Zurück zum Zitat ul-Islam S, Vertnik R, Šarler B (2013) Local radial basis function collocation method along with explicit time stepping for hyperbolic partial differential equations. Appl Numer Math 67:136–151MathSciNetCrossRefMATH ul-Islam S, Vertnik R, Šarler B (2013) Local radial basis function collocation method along with explicit time stepping for hyperbolic partial differential equations. Appl Numer Math 67:136–151MathSciNetCrossRefMATH
47.
Zurück zum Zitat ul-Islam S, Šarler B, Vertnik R, Kosec C (2012) Radial basis function collocation method for the numerical solution of the two-dimensional transient nonlinear coupled Burgers equations. Appl Math Model 36:1148–1160MathSciNetCrossRefMATH ul-Islam S, Šarler B, Vertnik R, Kosec C (2012) Radial basis function collocation method for the numerical solution of the two-dimensional transient nonlinear coupled Burgers equations. Appl Math Model 36:1148–1160MathSciNetCrossRefMATH
48.
Zurück zum Zitat Javed A, Djijdeli K, Xing JT (2014) Shape adaptive RBF-FD implicit scheme for incompressible viscous Navier–Stokes equations. Comput Fluids 89:38–52MathSciNetCrossRef Javed A, Djijdeli K, Xing JT (2014) Shape adaptive RBF-FD implicit scheme for incompressible viscous Navier–Stokes equations. Comput Fluids 89:38–52MathSciNetCrossRef
49.
Zurück zum Zitat Kansa EJ (1990) Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II. Comput. Math. Appl. 19:127–145MathSciNetCrossRefMATH Kansa EJ (1990) Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II. Comput. Math. Appl. 19:127–145MathSciNetCrossRefMATH
50.
Zurück zum Zitat Kansa EJ (1990) Multiquadrics—A scattered data approximation scheme with applications to computational fluid dynamics—II. Comput Math Appl 19:147–161MathSciNetCrossRefMATH Kansa EJ (1990) Multiquadrics—A scattered data approximation scheme with applications to computational fluid dynamics—II. Comput Math Appl 19:147–161MathSciNetCrossRefMATH
51.
Zurück zum Zitat Kansa EJ, Aldredge RC, Ling L (2009) Numerical simulation of two-dimensional combustion using mesh-free methods. Eng Anal Bound Elem 33:940–950MathSciNetCrossRefMATH Kansa EJ, Aldredge RC, Ling L (2009) Numerical simulation of two-dimensional combustion using mesh-free methods. Eng Anal Bound Elem 33:940–950MathSciNetCrossRefMATH
53.
Zurück zum Zitat Khaliq AQM, Martin-Vaquero J, Wade BA, Yousuf M (2009) Smoothing schemes for reaction-diffusion systems with non-smooth data. J Comput Appl Math 223:374–386MathSciNetCrossRefMATH Khaliq AQM, Martin-Vaquero J, Wade BA, Yousuf M (2009) Smoothing schemes for reaction-diffusion systems with non-smooth data. J Comput Appl Math 223:374–386MathSciNetCrossRefMATH
54.
55.
Zurück zum Zitat Li X (2016) Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces. Appl Numer Math 99:77–97MathSciNetCrossRefMATH Li X (2016) Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces. Appl Numer Math 99:77–97MathSciNetCrossRefMATH
56.
Zurück zum Zitat Li X (2011) Meshless Galerkin algorithms for boundary integral equations with moving least square approximations. Appl Numer Math 61(12):1237–1256MathSciNetCrossRefMATH Li X (2011) Meshless Galerkin algorithms for boundary integral equations with moving least square approximations. Appl Numer Math 61(12):1237–1256MathSciNetCrossRefMATH
57.
58.
Zurück zum Zitat Li X, Chen H, Wang Y (2015) Error analysis in Sobolev spaces for the improved moving least-square approximation and the improved element-free Galerkin method. Appl Math Comput 262:56–78MathSciNet Li X, Chen H, Wang Y (2015) Error analysis in Sobolev spaces for the improved moving least-square approximation and the improved element-free Galerkin method. Appl Math Comput 262:56–78MathSciNet
59.
Zurück zum Zitat Li X, Zhang S (2016) Meshless analysis and applications of a symmetric improved Galerkin boundary node method using improved moving least-square approximation. Appl Math Model 40:2875–2896MathSciNetCrossRef Li X, Zhang S (2016) Meshless analysis and applications of a symmetric improved Galerkin boundary node method using improved moving least-square approximation. Appl Math Model 40:2875–2896MathSciNetCrossRef
60.
Zurück zum Zitat Li X (2015) An interpolating boundary element-free method for three-dimensional potential problems. Appl Math Model 39:3116–3134MathSciNetCrossRef Li X (2015) An interpolating boundary element-free method for three-dimensional potential problems. Appl Math Model 39:3116–3134MathSciNetCrossRef
61.
Zurück zum Zitat Liang X, Khaliq AQM, Xing Y (2015) Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrödinger equations. Commun Comput Phys 17:510–541MathSciNetCrossRef Liang X, Khaliq AQM, Xing Y (2015) Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrödinger equations. Commun Comput Phys 17:510–541MathSciNetCrossRef
62.
Zurück zum Zitat Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Berlin Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Berlin
63.
Zurück zum Zitat Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38:1655–1697MathSciNetCrossRefMATH Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38:1655–1697MathSciNetCrossRefMATH
65.
Zurück zum Zitat Liu WK, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I) methodology and convergence. Comput Methods Appl Mech Eng 143:113–154MathSciNetCrossRefMATH Liu WK, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I) methodology and convergence. Comput Methods Appl Mech Eng 143:113–154MathSciNetCrossRefMATH
66.
Zurück zum Zitat Liu WK, Han W, Lu H, Li S, Cao J (2004) Reproducing kernel element method. Part I: Theoretical formulation. Comput Methods Appl Mech Eng 193:933–951CrossRefMATH Liu WK, Han W, Lu H, Li S, Cao J (2004) Reproducing kernel element method. Part I: Theoretical formulation. Comput Methods Appl Mech Eng 193:933–951CrossRefMATH
67.
Zurück zum Zitat Li S, Liu WK (1996) Moving least square reproducing kernel method part II: Fourier analysis. Comput Meth Appl Mech Eng 139:159–194CrossRefMATH Li S, Liu WK (1996) Moving least square reproducing kernel method part II: Fourier analysis. Comput Meth Appl Mech Eng 139:159–194CrossRefMATH
68.
Zurück zum Zitat Li S, Liu WK (2007) Meshfree particle methods. Springer, BerlinMATH Li S, Liu WK (2007) Meshfree particle methods. Springer, BerlinMATH
69.
Zurück zum Zitat Madaule E, Restelli M, Sonnendrücker E (2014) Energy conserving discontinuous Galerkin spectral element method for the Vlasov–Poisson system. J Comput Phys 279:261–288MathSciNetCrossRefMATH Madaule E, Restelli M, Sonnendrücker E (2014) Energy conserving discontinuous Galerkin spectral element method for the Vlasov–Poisson system. J Comput Phys 279:261–288MathSciNetCrossRefMATH
70.
Zurück zum Zitat Mirzaei D, Schaback R, Dehghan M (2012) On generalized moving least squares and diffuse derivatives. IMA J Numer Anal 32:983–1000MathSciNetCrossRefMATH Mirzaei D, Schaback R, Dehghan M (2012) On generalized moving least squares and diffuse derivatives. IMA J Numer Anal 32:983–1000MathSciNetCrossRefMATH
72.
Zurück zum Zitat Qiu JM, Shu CW (2011) Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system. J Comput Phys 230:8386–8409MathSciNetCrossRefMATH Qiu JM, Shu CW (2011) Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system. J Comput Phys 230:8386–8409MathSciNetCrossRefMATH
73.
Zurück zum Zitat Rippa S (1999) An algorithm for selecting a good value for the parameter \(c\) in radial basis function interpolation. Adv Comput Math 11:193–210MathSciNetCrossRefMATH Rippa S (1999) An algorithm for selecting a good value for the parameter \(c\) in radial basis function interpolation. Adv Comput Math 11:193–210MathSciNetCrossRefMATH
74.
Zurück zum Zitat Rossmanith JA, Seal DC (2011) A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov–Poisson equations. J Comput Phys 230:6203–6232MathSciNetCrossRefMATH Rossmanith JA, Seal DC (2011) A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov–Poisson equations. J Comput Phys 230:6203–6232MathSciNetCrossRefMATH
75.
76.
77.
Zurück zum Zitat Sarra SA, Cogar S (2017) An examination of evaluation algorithms for the RBF method. Eng Anal Bound Elem 75:36–45MathSciNetCrossRef Sarra SA, Cogar S (2017) An examination of evaluation algorithms for the RBF method. Eng Anal Bound Elem 75:36–45MathSciNetCrossRef
78.
Zurück zum Zitat Sarra SA (2012) A local radial basis function method for advection–diffusion–reaction equations on complexly shaped domains. Appl Math Comput 218:9853–9865MathSciNetMATH Sarra SA (2012) A local radial basis function method for advection–diffusion–reaction equations on complexly shaped domains. Appl Math Comput 218:9853–9865MathSciNetMATH
79.
Zurück zum Zitat Sarra SA (2014) Regularized symmetric positive definite matrix factorizations for linear systems arising from RBF interpolation and differentiation. Eng Anal Bound Elem 44:76–86MathSciNetCrossRefMATH Sarra SA (2014) Regularized symmetric positive definite matrix factorizations for linear systems arising from RBF interpolation and differentiation. Eng Anal Bound Elem 44:76–86MathSciNetCrossRefMATH
80.
Zurück zum Zitat Sarra SA (2011) Radial basis function approximation methods with extended precision floating point arithmetic. Eng Anal Bound Elem 35:68–76MathSciNetCrossRefMATH Sarra SA (2011) Radial basis function approximation methods with extended precision floating point arithmetic. Eng Anal Bound Elem 35:68–76MathSciNetCrossRefMATH
81.
Zurück zum Zitat Shankar V, Wright GB, Kirby RM, Fogelson AL (2015) A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction–diffusion equations on surfaces. J Sci Comput 63:745–768MathSciNetCrossRefMATH Shankar V, Wright GB, Kirby RM, Fogelson AL (2015) A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction–diffusion equations on surfaces. J Sci Comput 63:745–768MathSciNetCrossRefMATH
82.
Zurück zum Zitat Shu C, Ding H, Yeo KS (2003) Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 192:941–954CrossRefMATH Shu C, Ding H, Yeo KS (2003) Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 192:941–954CrossRefMATH
83.
Zurück zum Zitat Skubachevskii AL (2014) Vlasov–Poisson equations for a two-component plasma in a homogeneous magnetic field. Russ Math Surv 69(2):291–330MathSciNetCrossRefMATH Skubachevskii AL (2014) Vlasov–Poisson equations for a two-component plasma in a homogeneous magnetic field. Russ Math Surv 69(2):291–330MathSciNetCrossRefMATH
84.
Zurück zum Zitat Tolstykh AI (2000) On using RBF-based differencing formulas for unstructured and mixed structured–unstructured grid calculations. In: Proceedings of the 16th IMACS World Congress, Lausanne Tolstykh AI (2000) On using RBF-based differencing formulas for unstructured and mixed structured–unstructured grid calculations. In: Proceedings of the 16th IMACS World Congress, Lausanne
85.
Zurück zum Zitat Tolstykh AI, Shirobokov DA (2003) On using radial basis functions in a finite difference mode with applications to elasticity problems. Comput Mech 33:68–79MathSciNetCrossRefMATH Tolstykh AI, Shirobokov DA (2003) On using radial basis functions in a finite difference mode with applications to elasticity problems. Comput Mech 33:68–79MathSciNetCrossRefMATH
86.
Zurück zum Zitat Vlasov AA (1938) On vibration properties of electron gas. J Exp Theor Phys 8(3):291 Vlasov AA (1938) On vibration properties of electron gas. J Exp Theor Phys 8(3):291
87.
Zurück zum Zitat Vlasov AA (1968) The vibrational properties of an electron gas. Sov Phys Uspekhi 10(6):721CrossRef Vlasov AA (1968) The vibrational properties of an electron gas. Sov Phys Uspekhi 10(6):721CrossRef
88.
Zurück zum Zitat Wang B (2015) A local meshless method based on moving least squares and local radial basis functions. Eng Anal Bound Elem 50:395–401MathSciNetCrossRef Wang B (2015) A local meshless method based on moving least squares and local radial basis functions. Eng Anal Bound Elem 50:395–401MathSciNetCrossRef
89.
Zurück zum Zitat Weng YJ, Zhang Z, Cheng Y (2014) The complex variable reproducing kernel particle method for two-dimensional inverse heat conduction problems. Eng Anal Bound Elem 44:36–44MathSciNetCrossRefMATH Weng YJ, Zhang Z, Cheng Y (2014) The complex variable reproducing kernel particle method for two-dimensional inverse heat conduction problems. Eng Anal Bound Elem 44:36–44MathSciNetCrossRefMATH
90.
Zurück zum Zitat Wendland H (2005) Scattered data approximation. In: Cambridge monograph on applied and computational mathematics. Cambridge University Press Wendland H (2005) Scattered data approximation. In: Cambridge monograph on applied and computational mathematics. Cambridge University Press
91.
Zurück zum Zitat Wollman S, Ozizmir E (2005) Numerical approximation of the Vlasov–Poisson–Fokker–Planck system in one dimension. J Comput Phys 202:602–644MathSciNetCrossRefMATH Wollman S, Ozizmir E (2005) Numerical approximation of the Vlasov–Poisson–Fokker–Planck system in one dimension. J Comput Phys 202:602–644MathSciNetCrossRefMATH
92.
Zurück zum Zitat Wollman S, Ozizmir E (2009) Numerical approximation of the Vlasov–Poisson–Fokker–Planck system in two dimensions. J Comput Phys 228:6629–6669MathSciNetCrossRefMATH Wollman S, Ozizmir E (2009) Numerical approximation of the Vlasov–Poisson–Fokker–Planck system in two dimensions. J Comput Phys 228:6629–6669MathSciNetCrossRefMATH
93.
Zurück zum Zitat Wollman S (2005) Numerical approximation of the Vlasov–Maxwell–Fokker–Planck system in two dimensions. J Comput Phys 202:602–644MathSciNetCrossRefMATH Wollman S (2005) Numerical approximation of the Vlasov–Maxwell–Fokker–Planck system in two dimensions. J Comput Phys 202:602–644MathSciNetCrossRefMATH
94.
Zurück zum Zitat Xiong T, Qiu JM, Xu Z, Christlieb A (2014) High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation. J Comput Phys 273:618–639MathSciNetCrossRefMATH Xiong T, Qiu JM, Xu Z, Christlieb A (2014) High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation. J Comput Phys 273:618–639MathSciNetCrossRefMATH
Metadaten
Titel
A local meshless method for solving multi-dimensional Vlasov–Poisson and Vlasov–Poisson–Fokker–Planck systems arising in plasma physics
verfasst von
Mehdi Dehghan
Mostafa Abbaszadeh
Publikationsdatum
17.03.2017
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 4/2017
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-017-0509-y

Weitere Artikel der Ausgabe 4/2017

Engineering with Computers 4/2017 Zur Ausgabe

Neuer Inhalt