Skip to main content

03.12.2024

A Low Power Noise-Shaping SAR ADC with Improved Integrator and Hybrid DAC Mismatch Mitigation Technique

verfasst von: Gang Jin, Haofeng Wang, Kexin Zhang, Hualian Tang

Erschienen in: Circuits, Systems, and Signal Processing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With increasing attention drawn to medical devices, analog-to-digital converters (ADCs) with higher resolutions are in great demand to address more complex signal processing needs. A second-order noise-shaping successive approximation register (NS-SAR) ADC with new approaches is presented in this paper. The area and power consumption of the integrator is reduced by reusing the operational amplifier. Correlated level shifting (CLS) is implemented to further boost the DC gain of the op-amp and alleviate the integral leakage, which can help to realize a sharp noise transfer function (NTF). Moreover, CLS suppresses the memory effect caused by the op-amp reuse strategy with higher gain of the op-amp. By combining Mismatch Error Shaping (MES) and Random Rotation-Based binary-weighted Selection (RRBS) techniques, the impact of capacitor mismatch on DAC is mitigated with little additional hardware cost and logic complexity. A prototype ADC is simulated in 180 nm CMOS technology and achieves an SNDR of 91.4 dB over a bandwidth of 31.25 kHz while consuming only 138 μW. Schreier figure-of-merit (FoMs) is 174.9 dB.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Z. Chen, M. Miyahara, A. Matsuzawa (2016) A Order Fully-passive Noise-Shaping SAR ADC with Embedded Passive Gain. In: 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC). Toyama, Japan Z. Chen, M. Miyahara, A. Matsuzawa (2016) A Order Fully-passive Noise-Shaping SAR ADC with Embedded Passive Gain. In: 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC). Toyama, Japan
2.
Zurück zum Zitat Z. Chen, M. Miyahara, A. Matsuzawa, A 9.35-ENOB, 14.8 fJ/conv.-step Fully-passive Noise-Shaping SAR ADC, in 2015 Symposium on VLSI Circuits (VLSI Circuits), pp. 64–65(2015) Z. Chen, M. Miyahara, A. Matsuzawa, A 9.35-ENOB, 14.8 fJ/conv.-step Fully-passive Noise-Shaping SAR ADC, in 2015 Symposium on VLSI Circuits (VLSI Circuits), pp. 64–65(2015)
3.
Zurück zum Zitat J.A. Fredenburg, M.P. Flynn, A 90-MS/s 11-MHz-bandwidth 62-dB SNDR noise-shaping SAR ADC. IEEE J. Solid-State Circuits 47, 2898–2904 (2012)CrossRef J.A. Fredenburg, M.P. Flynn, A 90-MS/s 11-MHz-bandwidth 62-dB SNDR noise-shaping SAR ADC. IEEE J. Solid-State Circuits 47, 2898–2904 (2012)CrossRef
4.
Zurück zum Zitat B.R. Gregoire, U.-K. Moon, An over-60 dB true rail-to-rail performance using correlated level shifting and an opamp with only 30 dB loop gain. IEEE J. Solid-State Circuits 42, 2620–2630 (2008)CrossRef B.R. Gregoire, U.-K. Moon, An over-60 dB true rail-to-rail performance using correlated level shifting and an opamp with only 30 dB loop gain. IEEE J. Solid-State Circuits 42, 2620–2630 (2008)CrossRef
5.
Zurück zum Zitat X. Han , X. Tang, A Vector Pair Based DWA Algorithm for Linearity Enhancement of CDACs in the NS-SAR ADC, 2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), (2022) X. Han , X. Tang, A Vector Pair Based DWA Algorithm for Linearity Enhancement of CDACs in the NS-SAR ADC, 2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), (2022)
6.
Zurück zum Zitat K. Jeong, S. Ha, M. Je, A 15.4-ENOB, fourth-order truncation-error-shaping NS-SAR-nested ΔΣ modulator with boosted input impedance and range for biosignal acquisition. IEEE J. Solid-State Circuits 59, 528–539 (2024)CrossRef K. Jeong, S. Ha, M. Je, A 15.4-ENOB, fourth-order truncation-error-shaping NS-SAR-nested ΔΣ modulator with boosted input impedance and range for biosignal acquisition. IEEE J. Solid-State Circuits 59, 528–539 (2024)CrossRef
7.
Zurück zum Zitat L. Jie, J. Liu, X. Tang, An overview of noise-shaping SAR ADC: from fundamentals to the frontier. IEEE Open J Solid-State Circuits Soc 1, 149–161 (2021)CrossRef L. Jie, J. Liu, X. Tang, An overview of noise-shaping SAR ADC: from fundamentals to the frontier. IEEE Open J Solid-State Circuits Soc 1, 149–161 (2021)CrossRef
8.
Zurück zum Zitat C.L. Kok, L. Siek, Designing a twin frequency control DC-DC buck converter using accurate load current sensing technique. Electronics 13(1), 45 (2024)CrossRef C.L. Kok, L. Siek, Designing a twin frequency control DC-DC buck converter using accurate load current sensing technique. Electronics 13(1), 45 (2024)CrossRef
9.
Zurück zum Zitat H. Li, Y. Shen, E. Cantatore and P. Harpe, A First-Order Continuous-Time Noise-Shaping SAR ADC with Duty-Cycled Integrator, IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), pp. 58–59 (2022) H. Li, Y. Shen, E. Cantatore and P. Harpe, A First-Order Continuous-Time Noise-Shaping SAR ADC with Duty-Cycled Integrator, IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), pp. 58–59 (2022)
10.
Zurück zum Zitat H. Li, Y. Shen, H. Xin, E. Cantatore, P. Harpe, A 7.3-μW 13-ENOB 98-dB SFDR noise-shaping SAR ADC with duty-cycled amplifier and mismatch error shaping. IEEE J. Solid-State Circuits 57, 2078–2089 (2022)CrossRef H. Li, Y. Shen, H. Xin, E. Cantatore, P. Harpe, A 7.3-μW 13-ENOB 98-dB SFDR noise-shaping SAR ADC with duty-cycled amplifier and mismatch error shaping. IEEE J. Solid-State Circuits 57, 2078–2089 (2022)CrossRef
11.
Zurück zum Zitat S. Li, B. Qiao, M. Gandara, D.Z. Pan, N. Sun, A 13-ENOB second-order noise-shaping SAR ADC realizing optimized NTF zeros using the error-feedback structure. IEEE J. Solid-State Circuits 53, 3484–3496 (2018)CrossRef S. Li, B. Qiao, M. Gandara, D.Z. Pan, N. Sun, A 13-ENOB second-order noise-shaping SAR ADC realizing optimized NTF zeros using the error-feedback structure. IEEE J. Solid-State Circuits 53, 3484–3496 (2018)CrossRef
12.
Zurück zum Zitat Y. Li, Y. Zhao, Y. Zhao, A 12.1bit-ENOB noise shaping SAR ADC for biosensor applications. Microelectr J. 118, 105292 (2021)CrossRef Y. Li, Y. Zhao, Y. Zhao, A 12.1bit-ENOB noise shaping SAR ADC for biosensor applications. Microelectr J. 118, 105292 (2021)CrossRef
13.
Zurück zum Zitat Y. Z. Lin, C. Y. Lin, S. C. Tsou, C. H. Tsai, A 40MHz-BW 320MS/s Passive Noise-Shaping SAR ADC with Passive Signal-Residue Summation in 14nm FinFET. In: 2019 IEEE International Solid-State Circuits Conference (ISSCC), pp. 330–332 (2019) Y. Z. Lin, C. Y. Lin, S. C. Tsou, C. H. Tsai, A 40MHz-BW 320MS/s Passive Noise-Shaping SAR ADC with Passive Signal-Residue Summation in 14nm FinFET. In: 2019 IEEE International Solid-State Circuits Conference (ISSCC), pp. 330–332 (2019)
14.
Zurück zum Zitat W.T. Lin, T.H. Kuo, A compact dynamic-performance-improved current-steering DAC with random rotation-based binary-weighted selection. IEEE J. Solid-State Circuits 47, 444–453 (2012)CrossRef W.T. Lin, T.H. Kuo, A compact dynamic-performance-improved current-steering DAC with random rotation-based binary-weighted selection. IEEE J. Solid-State Circuits 47, 444–453 (2012)CrossRef
15.
Zurück zum Zitat C. C. Liu, M. C. Huang, A 0.46mW 5MHz-BW 79.7dB-SNDR Noise-Shaping SAR ADC with Dynamic-Amplifier-Based FIR-IIR Filter. In: 2017 IEEE International Solid-State Circuits Conference (ISSCC), pp. 466–467 (2017) C. C. Liu, M. C. Huang, A 0.46mW 5MHz-BW 79.7dB-SNDR Noise-Shaping SAR ADC with Dynamic-Amplifier-Based FIR-IIR Filter. In: 2017 IEEE International Solid-State Circuits Conference (ISSCC), pp. 466–467 (2017)
16.
Zurück zum Zitat J. Liu, X. Wang, Z. Gao, M. Zhan, X. Tang, N. Sun, A 40kHz-BW 90dB-SNDR Noise-Shaping SAR with 4× Passive Gain and 2nd-Order Mismatch Error Shaping. In: 2020 IEEE International Solid-State Circuits Conference (ISSCC), pp. 158–160 (2020) J. Liu, X. Wang, Z. Gao, M. Zhan, X. Tang, N. Sun, A 40kHz-BW 90dB-SNDR Noise-Shaping SAR with 4× Passive Gain and 2nd-Order Mismatch Error Shaping. In: 2020 IEEE International Solid-State Circuits Conference (ISSCC), pp. 158–160 (2020)
17.
Zurück zum Zitat J. Liu, C.K. Hsu, X. Tang, S. Li, G. Wen, N. Sun, Error-feedback mismatch error shaping for high-resolution data converters. IEEE Trans Circuits Syst I Reg Pap. 66, 1342–1354 (2019)CrossRef J. Liu, C.K. Hsu, X. Tang, S. Li, G. Wen, N. Sun, Error-feedback mismatch error shaping for high-resolution data converters. IEEE Trans Circuits Syst I Reg Pap. 66, 1342–1354 (2019)CrossRef
18.
Zurück zum Zitat Y. Lu, H. Shen, A 91 dB SNDR Calibration-Free Fully-Passive Noise-Shaping SAR ADC with Mismatch Error Shaping. In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2024) Y. Lu, H. Shen, A 91 dB SNDR Calibration-Free Fully-Passive Noise-Shaping SAR ADC with Mismatch Error Shaping. In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2024)
19.
Zurück zum Zitat L. Meng, Y. Hu, A 1.2-V 2.87-μW 94.0-dB SNDR Discrete-Time 2–0 MASH Delta-Sigma ADC. IEEE J. Solid-State Circuits 58, 1636–1645 (2023)CrossRef L. Meng, Y. Hu, A 1.2-V 2.87-μW 94.0-dB SNDR Discrete-Time 2–0 MASH Delta-Sigma ADC. IEEE J. Solid-State Circuits 58, 1636–1645 (2023)CrossRef
20.
Zurück zum Zitat K. Obata, K. Matsukawa, T. Miki, Y. Tsukamoto, A 97.99 dB SNDR, 2 kHz BW, 37.1 μW noise-shaping SAR ADC with dynamic element matching and modulation dither effect. In: IEEE Symposium on VLSI Circuits (VLSI-Circuits), pp. 1–2 (2016) K. Obata, K. Matsukawa, T. Miki, Y. Tsukamoto, A 97.99 dB SNDR, 2 kHz BW, 37.1 μW noise-shaping SAR ADC with dynamic element matching and modulation dither effect. In: IEEE Symposium on VLSI Circuits (VLSI-Circuits), pp. 1–2 (2016)
21.
Zurück zum Zitat A. Shabra, Y. S. Shu, S. H. Wen ,K. D. Chen, Design Techniques for High Linearity and Dynamic Range Digital to Analog Converters. In: 2022 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–8 (2022) A. Shabra, Y. S. Shu, S. H. Wen ,K. D. Chen, Design Techniques for High Linearity and Dynamic Range Digital to Analog Converters. In: 2022 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–8 (2022)
22.
Zurück zum Zitat Y. Shen, H. Li, H. Xin, E. Cantatore, P. Harpe, A 103-dB SFDR calibration-free oversampled SAR ADC with mismatch error shaping and pre-comparison techniques. IEEE J. Solid-State Circuits 57, 734–744 (2022)CrossRef Y. Shen, H. Li, H. Xin, E. Cantatore, P. Harpe, A 103-dB SFDR calibration-free oversampled SAR ADC with mismatch error shaping and pre-comparison techniques. IEEE J. Solid-State Circuits 57, 734–744 (2022)CrossRef
23.
Zurück zum Zitat Y.S. Shu, L.T. Kuo, T.Y. Lo, An oversampling SAR ADC with DAC mismatch error shaping achieving 105 dB SFDR and 101 dB SNDR Over 1 kHz BW in 55 nm CMOS. IEEE J. Solid-State Circuits 51, 2928–2940 (2016)CrossRef Y.S. Shu, L.T. Kuo, T.Y. Lo, An oversampling SAR ADC with DAC mismatch error shaping achieving 105 dB SFDR and 101 dB SNDR Over 1 kHz BW in 55 nm CMOS. IEEE J. Solid-State Circuits 51, 2928–2940 (2016)CrossRef
24.
Zurück zum Zitat A. Suanes, L. Terés, M. Dei, F. Serra-Graells, A 0.8mW 50kHz 94.6dB-SNDR Bootstrapping-Free SC Delta-Sigma Modulator ADC with Flicker Noise Cancellation. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2021) A. Suanes, L. Terés, M. Dei, F. Serra-Graells, A 0.8mW 50kHz 94.6dB-SNDR Bootstrapping-Free SC Delta-Sigma Modulator ADC with Flicker Noise Cancellation. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2021)
25.
Zurück zum Zitat X. Tang, X. Yang, W. Zhao, A 13.5-ENOB, 107-μW noise-shaping SAR ADC With PVT-robust closed-loop dynamic amplifier. IEEE J. Solid-State Circuits 55, 3248–3259 (2020)CrossRef X. Tang, X. Yang, W. Zhao, A 13.5-ENOB, 107-μW noise-shaping SAR ADC With PVT-robust closed-loop dynamic amplifier. IEEE J. Solid-State Circuits 55, 3248–3259 (2020)CrossRef
26.
Zurück zum Zitat X. Tang, X. Yang, W. Zhao, A 13.5b-ENOB Second-Order Noise-Shaping SAR with PVT-Robust Closed-Loop Dynamic Amplifier. In: 2020 IEEE International Solid-State Circuits Conference (ISSCC), pp. 162–164 (2020) X. Tang, X. Yang, W. Zhao, A 13.5b-ENOB Second-Order Noise-Shaping SAR with PVT-Robust Closed-Loop Dynamic Amplifier. In: 2020 IEEE International Solid-State Circuits Conference (ISSCC), pp. 162–164 (2020)
27.
Zurück zum Zitat T.H. Wang, R. Wu, V. Gupta, X. Tang, S. Li, A 13.8-ENOB fully dynamic third-order noise-shaping SAR ADC in a single-amplifier EF-CIFF structure with hardware-reusing kT/C noise cancellation. IEEE J. Solid-State Circuits 56, 3668–3680 (2021)CrossRef T.H. Wang, R. Wu, V. Gupta, X. Tang, S. Li, A 13.8-ENOB fully dynamic third-order noise-shaping SAR ADC in a single-amplifier EF-CIFF structure with hardware-reusing kT/C noise cancellation. IEEE J. Solid-State Circuits 56, 3668–3680 (2021)CrossRef
28.
Zurück zum Zitat C. Yang, L. Qiu, K. Tang, Y. Zheng, A 98.6 dB SNDR SAR ADC with a mismatch error shaping technique implemented with double sampling. IEEE TransCircuits Syst II Exp Briefs 69, 774–778 (2022) C. Yang, L. Qiu, K. Tang, Y. Zheng, A 98.6 dB SNDR SAR ADC with a mismatch error shaping technique implemented with double sampling. IEEE TransCircuits Syst II Exp Briefs 69, 774–778 (2022)
29.
Zurück zum Zitat C. Yang, E. Olieman, A. Litjes, An area-efficient SAR ADC with mismatch error shaping technique achieving 102-dB SFDR 90.2-dB SNDR Over 20-kHz bandwidth. IEEE Transa Very Large Scale Integr Syst. 29, 1575–1585 (2021)CrossRef C. Yang, E. Olieman, A. Litjes, An area-efficient SAR ADC with mismatch error shaping technique achieving 102-dB SFDR 90.2-dB SNDR Over 20-kHz bandwidth. IEEE Transa Very Large Scale Integr Syst. 29, 1575–1585 (2021)CrossRef
30.
Zurück zum Zitat P. Yi, Y. Liang, S. Liu, N. Xu, L. Fang, Y. Hao, A 625kHz-BW, 79.3dB-SNDR second-order noise-shaping SAR ADC using high-efficiency error-feedback structure. IEEE Trans Circuits Syst II Exp Briefs 69, 859–863 (2022) P. Yi, Y. Liang, S. Liu, N. Xu, L. Fang, Y. Hao, A 625kHz-BW, 79.3dB-SNDR second-order noise-shaping SAR ADC using high-efficiency error-feedback structure. IEEE Trans Circuits Syst II Exp Briefs 69, 859–863 (2022)
31.
Zurück zum Zitat Q. Zhang, N. Ning, A 13-Bit ENOB third-order noise-shaping SAR ADC employing hybrid error control structure and LMS-based foreground digital calibration. IEEE J. Solid-State Circuits 57, 2181–2195 (2022)CrossRef Q. Zhang, N. Ning, A 13-Bit ENOB third-order noise-shaping SAR ADC employing hybrid error control structure and LMS-based foreground digital calibration. IEEE J. Solid-State Circuits 57, 2181–2195 (2022)CrossRef
Metadaten
Titel
A Low Power Noise-Shaping SAR ADC with Improved Integrator and Hybrid DAC Mismatch Mitigation Technique
verfasst von
Gang Jin
Haofeng Wang
Kexin Zhang
Hualian Tang
Publikationsdatum
03.12.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02923-8