Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

29.01.2019 | Ausgabe 3/2019

Mathematics and Financial Economics 3/2019

A macroscopic portfolio model: from rational agents to bounded rationality

Zeitschrift:
Mathematics and Financial Economics > Ausgabe 3/2019
Autor:
Torsten Trimborn
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

We introduce a microscopic model of interacting financial agents, where each agent is characterized by two portfolios; money invested in bonds and money invested in stocks. Furthermore, each agent is faced with an optimization problem in order to determine the optimal asset allocation. Thus, we consider a differential game since all agents aim to invest optimal and we introduce the concept of Nash equilibrium solutions to ensure the existence of a solution. Especially, we denote an agent who solves this Nash equilibrium exactly a rational agent. As next step we use model predictive control to approximate the control problem. This enables us to derive a precise mathematical characterization of the degree of rationality of a financial agent. This is a novel concept in portfolio optimization and can be regarded as a general approach. In a second step we consider the case of a fully myopic agent, where we can solve the optimal investment decision of investors explicitly. We select the running cost to be the expected missed revenue of an agent which are determined by a combination of a fundamentalist and chartist strategy. Then we derive the mean field limit of the microscopic model in order to obtain a macroscopic portfolio model. The novelty in comparison to existent macroeconomic models in literature is that our model is derived from microeconomic dynamics. The resulting portfolio model is a three dimensional ODE system which enables us to derive analytical results. The conducted simulations reveal that the model shares many dynamical properties with existing models in literature. Thus, our model is able to replicate the most prominent features of financial markets, namely booms and crashes. In the case of random fundamental prices the model is even able to reproduce fat tails in logarithmic stock price return data. Mathematically, the model can be regarded as the moment model of the recently introduced mesoscopic kinetic portfolio model (Trimborn et al. in Portfolio optimization and model predictive con trol: a kinetic approach, arXiv:​1711.​03291, 2017).

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2019

Mathematics and Financial Economics 3/2019 Zur Ausgabe

Premium Partner

    Bildnachweise