Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2019

21.03.2019

A macroscopic traffic model based on driver physiological response

verfasst von: Z. H. Khan, T. A. Gulliver, H. Nasir, A. Rehman, K. Shahzada

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a new traffic model is presented, which characterizes spatial changes in traffic density to align the traffic flow with forward conditions. The commonly employed Payne–Whitham (PW) model adjusts the traffic with a constant speed (velocity) regardless of the conditions, which is unrealistic. With the proposed model, the spatial density alignment is a function of the driver physiological response. As a consequence, traffic aligns quickly for an aggressive driver and slowly for a sluggish driver. Results are presented for abrupt changes in traffic density caused by a bottleneck on a circular road, which shows that the proposed model provides more realistic behavior than the PW model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lighthill MJ, Whitham JB (1955) On kinematic waves II: a theory of traffic flow on long crowded roads. Proc R Soc Lond Ser A 229(1178):317–345MathSciNetCrossRefMATH Lighthill MJ, Whitham JB (1955) On kinematic waves II: a theory of traffic flow on long crowded roads. Proc R Soc Lond Ser A 229(1178):317–345MathSciNetCrossRefMATH
3.
Zurück zum Zitat Zhang HM (1998) A theory of non-equilibrium traffic flow. Transp Res B 32(7):485–498CrossRef Zhang HM (1998) A theory of non-equilibrium traffic flow. Transp Res B 32(7):485–498CrossRef
4.
Zurück zum Zitat Payne HJ (1971) Models of freeway traffic and control. In: Proceedings of the mathematical models of public systems simulation council, La Jolla, CA, pp 51–61 Payne HJ (1971) Models of freeway traffic and control. In: Proceedings of the mathematical models of public systems simulation council, La Jolla, CA, pp 51–61
5.
Zurück zum Zitat Piccolo B, Tosin A (2011) Vehicular traffic: a review of continuum mathematical models. In: Meyers RA (ed) Mathematics of complexity and dynamical systems. Springer, Berlin, pp 1748–1770 Piccolo B, Tosin A (2011) Vehicular traffic: a review of continuum mathematical models. In: Meyers RA (ed) Mathematics of complexity and dynamical systems. Springer, Berlin, pp 1748–1770
6.
Zurück zum Zitat Whitham GB (1974) Linear and nonlinear waves. Wiley, New York, NYMATH Whitham GB (1974) Linear and nonlinear waves. Wiley, New York, NYMATH
7.
Zurück zum Zitat Daganzo CF (1995) Requiem for second-order fluid approximations of traffic flow. Transp Res B 29(4):277–286CrossRef Daganzo CF (1995) Requiem for second-order fluid approximations of traffic flow. Transp Res B 29(4):277–286CrossRef
8.
Zurück zum Zitat Del Castillo JM, Pintado P, Benitez FG (1994) The reaction time of drivers and the stability of traffic flow. Transp Res B 28(1):35–60CrossRef Del Castillo JM, Pintado P, Benitez FG (1994) The reaction time of drivers and the stability of traffic flow. Transp Res B 28(1):35–60CrossRef
10.
Zurück zum Zitat Zhang HM (2002) A non-equilibrium traffic model deviod of gas-like behaviour. Transp Res B 36(3):275–290CrossRef Zhang HM (2002) A non-equilibrium traffic model deviod of gas-like behaviour. Transp Res B 36(3):275–290CrossRef
11.
Zurück zum Zitat Berg P, Mason A, Woods A (2000) Continuum approach to car-following models. Phys Rev E 61(2):1056–1066CrossRef Berg P, Mason A, Woods A (2000) Continuum approach to car-following models. Phys Rev E 61(2):1056–1066CrossRef
12.
Zurück zum Zitat Morgan JV (2002) Numerical methods for macroscopic traffic models. PhD dissertation, University of Reading, Berkshire, UK Morgan JV (2002) Numerical methods for macroscopic traffic models. PhD dissertation, University of Reading, Berkshire, UK
13.
Zurück zum Zitat Greenshields BD (1935) A study in highway capacity. Proc Highw Res Board 14:448–477 Greenshields BD (1935) A study in highway capacity. Proc Highw Res Board 14:448–477
14.
Zurück zum Zitat Muralidharan A (2012) Tools for modeling and control of freeway networks. PhD dissertation, Department of Mechanical Engineering University of California Berkeley, Berkeley, CA Muralidharan A (2012) Tools for modeling and control of freeway networks. PhD dissertation, Department of Mechanical Engineering University of California Berkeley, Berkeley, CA
16.
Zurück zum Zitat Ngoduy D (2012) Effect of driver behaviors on the formation and dissipation of traffic flow instabilities. Nonlinear Dyn 69(3):969–975MathSciNetCrossRef Ngoduy D (2012) Effect of driver behaviors on the formation and dissipation of traffic flow instabilities. Nonlinear Dyn 69(3):969–975MathSciNetCrossRef
17.
Zurück zum Zitat Bellouquid A, De Angelis E, Fermo L (2012) Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach. Math Models Methods Appl Sci 22:1140003MathSciNetCrossRefMATH Bellouquid A, De Angelis E, Fermo L (2012) Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach. Math Models Methods Appl Sci 22:1140003MathSciNetCrossRefMATH
18.
Zurück zum Zitat Bellomo N, Bellouquid A, Nieto J, Soler J (2014) On the multiscale modelling of vehicular traffic: from kinetic to hydrodynamics. Disc Contin Dyn Syst B 19(7):1869–1888CrossRefMATH Bellomo N, Bellouquid A, Nieto J, Soler J (2014) On the multiscale modelling of vehicular traffic: from kinetic to hydrodynamics. Disc Contin Dyn Syst B 19(7):1869–1888CrossRefMATH
19.
Zurück zum Zitat Shipp D (2009) A simulation of road traffic to model causes of congestion. BSc thesis, University of Bath, UK Shipp D (2009) A simulation of road traffic to model causes of congestion. BSc thesis, University of Bath, UK
20.
Zurück zum Zitat Khan ZH, Gulliver TA (2018) A macroscopic traffic model for traffic flow harmonization. Europn Transp Res Rev 10:30CrossRef Khan ZH, Gulliver TA (2018) A macroscopic traffic model for traffic flow harmonization. Europn Transp Res Rev 10:30CrossRef
21.
Zurück zum Zitat Helbing D, Johansson A (2009) On the controversy around Daganzo’s requiem for and Aw-Rascle’s resurrection of second-order traffic flow models. Eur Phys J B 69(4):549–562CrossRef Helbing D, Johansson A (2009) On the controversy around Daganzo’s requiem for and Aw-Rascle’s resurrection of second-order traffic flow models. Eur Phys J B 69(4):549–562CrossRef
22.
Zurück zum Zitat Treiber M, Kesting A (2013) Traffic flow dynamics: data, models and simulation. Springer, BerlinCrossRefMATH Treiber M, Kesting A (2013) Traffic flow dynamics: data, models and simulation. Springer, BerlinCrossRefMATH
23.
Zurück zum Zitat Gupta AK, Dhiman I (2014) Analyses of a continuum traffic flow model for a nonlane-based system. Int J Mod Phys C 25(10):1450045MathSciNetCrossRef Gupta AK, Dhiman I (2014) Analyses of a continuum traffic flow model for a nonlane-based system. Int J Mod Phys C 25(10):1450045MathSciNetCrossRef
24.
Zurück zum Zitat Ngoduy D, Tampere C (2009) Macroscopic effects of reaction time on traffic flow characteristics. Phys Scr 80(2):025802CrossRefMATH Ngoduy D, Tampere C (2009) Macroscopic effects of reaction time on traffic flow characteristics. Phys Scr 80(2):025802CrossRefMATH
25.
Zurück zum Zitat Chen X, Li L, Shi Q (2015) Stochastic evolutions of dynamic traffic flow. Springer, BerlinCrossRef Chen X, Li L, Shi Q (2015) Stochastic evolutions of dynamic traffic flow. Springer, BerlinCrossRef
26.
27.
Zurück zum Zitat Khan ZH, Gulliver TA (2018) A macroscopic traffic model based on weather conditions. Chin Phys B 27:070202CrossRef Khan ZH, Gulliver TA (2018) A macroscopic traffic model based on weather conditions. Chin Phys B 27:070202CrossRef
28.
Zurück zum Zitat Toro EF (2009) Riemann solvers and numerical methods for fluid dynamics. Springer, BerlinCrossRefMATH Toro EF (2009) Riemann solvers and numerical methods for fluid dynamics. Springer, BerlinCrossRefMATH
29.
Zurück zum Zitat Kermani MJ, Plett EG (2001) Modified entropy correction formula for the Roe scheme. In: American Institute Aeronautics and Astronautics Aerospace sciences meeting and exhibit, Reno, NV, Paper 2001-0083, pp 1–11 Kermani MJ, Plett EG (2001) Modified entropy correction formula for the Roe scheme. In: American Institute Aeronautics and Astronautics Aerospace sciences meeting and exhibit, Reno, NV, Paper 2001-0083, pp 1–11
30.
Zurück zum Zitat Harten A, Hayman JM (1983) Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J Comput Phys 50(2):235–269MathSciNetCrossRefMATH Harten A, Hayman JM (1983) Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J Comput Phys 50(2):235–269MathSciNetCrossRefMATH
31.
Zurück zum Zitat Basak K, Hetu SN, Li Z, Azevedo CL, Loganathan H, Toledo T, Xu R, Xu Y, Peh LS, Ben-Akiva M (2013) Modelling reaction time with in a traffic simulation model. In: IEEE conference on intelligent transportation systems, The Hague, The Netherlands, pp 302–309 Basak K, Hetu SN, Li Z, Azevedo CL, Loganathan H, Toledo T, Xu R, Xu Y, Peh LS, Ben-Akiva M (2013) Modelling reaction time with in a traffic simulation model. In: IEEE conference on intelligent transportation systems, The Hague, The Netherlands, pp 302–309
32.
Zurück zum Zitat LeVeque RJ (1992) Numerical methods for conservation laws, 2nd ed. Lectures in Mathematics. ETH Zürich, Birkhäuser Verlag, Basel LeVeque RJ (1992) Numerical methods for conservation laws, 2nd ed. Lectures in Mathematics. ETH Zürich, Birkhäuser Verlag, Basel
33.
Zurück zum Zitat Jin W (2000) Traffic flow models and their numerical solutions. Masters thesis, Department of Mathematics University of California Davis, Davis, CA Jin W (2000) Traffic flow models and their numerical solutions. Masters thesis, Department of Mathematics University of California Davis, Davis, CA
34.
Zurück zum Zitat Jin WL, Zhang HM ( 2001) Solving the Payne–Whitham traffic flow model as a hyperbolic system of conservation laws with relaxation. Technical Report UCD-ITS-Zhang-2001-1, University of California Davis, Davis, CA Jin WL, Zhang HM ( 2001) Solving the Payne–Whitham traffic flow model as a hyperbolic system of conservation laws with relaxation. Technical Report UCD-ITS-Zhang-2001-1, University of California Davis, Davis, CA
Metadaten
Titel
A macroscopic traffic model based on driver physiological response
verfasst von
Z. H. Khan
T. A. Gulliver
H. Nasir
A. Rehman
K. Shahzada
Publikationsdatum
21.03.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2019
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-019-09990-w

Weitere Artikel der Ausgabe 1/2019

Journal of Engineering Mathematics 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.