Skip to main content
Erschienen in: Calcolo 1/2022

01.03.2022

A mass and energy conservative fourth-order compact difference scheme for the Klein-Gordon-Dirac equations\(^{\star }\)

verfasst von: Feng Liao, Fazhan Geng, Tingchun Wang

Erschienen in: Calcolo | Ausgabe 1/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper is concerned with numerical solution of the two-dimensional Klein-Gordon-Dirac equations by a fourth-order compact finite difference method in space and an energy-preserving Crank-Nicolson-type discretization in time. For convenience of illustrating the conservative properties and investigating the convergence results, we convert the component-wise form of the proposed scheme into an equivalent matrix-vector form. By using the mathematical induction argument and standard energy method, we establish the optimal error estimates under condition \(\tau \le \frac{1}{|\mathrm {ln}(h)|}\) with time step \(\tau\) and mesh size h. Compared with the condition \(\tau =O(h^{\frac{1}{2}})\) required by existing results in literature for two-dimensional case, this greatly relaxes the dependence of the time step on the grid size. The convergence order of the scalar \(\phi\) and the 2-spinor \(\psi\) is of \(O(\tau ^{2}+h^{4})\) in the maximum norm and the discrete \(H^{1}\)-norm, respectively. In addition, by using the orthogonal diagonalization technique, a fast solver is designed to solve the proposed scheme. Several numerical results are reported to verify the error estimates and the discrete conservation laws.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ancona, P., Selberg, S.: Global well-posedness of the Maxwell-Dirac system in two space dimensions. J. Funct. Anal. 260, 2300–2365 (2011)MathSciNetCrossRef Ancona, P., Selberg, S.: Global well-posedness of the Maxwell-Dirac system in two space dimensions. J. Funct. Anal. 260, 2300–2365 (2011)MathSciNetCrossRef
2.
Zurück zum Zitat Bao, W., Cai, Y., Jia, X., Jia, Y.: Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime. Sci. Chin. Math. 59, 1461–1494 (2016)MathSciNetCrossRef Bao, W., Cai, Y., Jia, X., Jia, Y.: Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime. Sci. Chin. Math. 59, 1461–1494 (2016)MathSciNetCrossRef
3.
Zurück zum Zitat Bao, W., Feng, Y., Yi, W.: Long time error analysis of finite difference time domain methods for the nonlinear Klein-Gordon equation with weak nonlinearity. Commun. Comput. Phys. 26, 1307–1334 (2019)MathSciNetCrossRef Bao, W., Feng, Y., Yi, W.: Long time error analysis of finite difference time domain methods for the nonlinear Klein-Gordon equation with weak nonlinearity. Commun. Comput. Phys. 26, 1307–1334 (2019)MathSciNetCrossRef
4.
Zurück zum Zitat Bao, W., Cai, Y., Jia, X., Tang, Q.: Numerical methods and comparison for the Dirac equation in the nonrelativistic limit regime. J. Sci. Comput. 71, 1094–1134 (2017)MathSciNetCrossRef Bao, W., Cai, Y., Jia, X., Tang, Q.: Numerical methods and comparison for the Dirac equation in the nonrelativistic limit regime. J. Sci. Comput. 71, 1094–1134 (2017)MathSciNetCrossRef
5.
Zurück zum Zitat Bournaveas, N.: A new proof of global existence for the Dirac Klein-Gordon equations in one space dimension. J. Funct. Anal. 173, 203–213 (2000)MathSciNetCrossRef Bournaveas, N.: A new proof of global existence for the Dirac Klein-Gordon equations in one space dimension. J. Funct. Anal. 173, 203–213 (2000)MathSciNetCrossRef
6.
Zurück zum Zitat Bagus, R., Wibowo, E.: Scattering problem for a system of nonlinear Klein-Gordon equations related to Dirac-Klein-Gordon equations. Nonlinear Anal. Theor. Meth. Appl. 71, 881–890 (2009)MathSciNetCrossRef Bagus, R., Wibowo, E.: Scattering problem for a system of nonlinear Klein-Gordon equations related to Dirac-Klein-Gordon equations. Nonlinear Anal. Theor. Meth. Appl. 71, 881–890 (2009)MathSciNetCrossRef
7.
Zurück zum Zitat Cai, J., Yang, B., Zhang, C.: Efficient mass and energy preserving schemes for the coupled nonlinear Schrödinger-Boussinesq system. Appl. Math. Lett. 91, 76–82 (2019)MathSciNetCrossRef Cai, J., Yang, B., Zhang, C.: Efficient mass and energy preserving schemes for the coupled nonlinear Schrödinger-Boussinesq system. Appl. Math. Lett. 91, 76–82 (2019)MathSciNetCrossRef
8.
Zurück zum Zitat Cai, Y., Yi, W.: Error estimates of finite difference time domain methods for the Klein-Gordon-Dirac system in the nonrelativistic limit regime. Commun. Math. Sci. 16, 1325–1346 (2018)MathSciNetCrossRef Cai, Y., Yi, W.: Error estimates of finite difference time domain methods for the Klein-Gordon-Dirac system in the nonrelativistic limit regime. Commun. Math. Sci. 16, 1325–1346 (2018)MathSciNetCrossRef
9.
Zurück zum Zitat Cai, Y., Wang, Y.: A uniformly accurate (UA) multiscale time integrator pseudospectral method for the nonlinear Dirac equation in the nonrelativistic limit regime. ESAIM Math. Model. Numer. Anal. 52, 543–566 (2018)MathSciNetCrossRef Cai, Y., Wang, Y.: A uniformly accurate (UA) multiscale time integrator pseudospectral method for the nonlinear Dirac equation in the nonrelativistic limit regime. ESAIM Math. Model. Numer. Anal. 52, 543–566 (2018)MathSciNetCrossRef
10.
Zurück zum Zitat Chadam, J.: Global solutions of the Cauchy problem for the (classical) Maxwell-Dirac equations in one space dimension. J. Funct. Anal. 13, 173–184 (1973)MathSciNetCrossRef Chadam, J.: Global solutions of the Cauchy problem for the (classical) Maxwell-Dirac equations in one space dimension. J. Funct. Anal. 13, 173–184 (1973)MathSciNetCrossRef
11.
Zurück zum Zitat Chadam, J., Glassey, R.: On certain global solutions of the Cauchy problem for the (classical) coupled Klein-Gordon-Dirac equations in one and three space dimensions. Arch. Ration. Mech. Anal. 54, 223–237 (1974)MathSciNetCrossRef Chadam, J., Glassey, R.: On certain global solutions of the Cauchy problem for the (classical) coupled Klein-Gordon-Dirac equations in one and three space dimensions. Arch. Ration. Mech. Anal. 54, 223–237 (1974)MathSciNetCrossRef
12.
Zurück zum Zitat Chen, G., Zheng, Y.: Stationary solutions of non-autonomous Maxwell-Dirac systems. J. Differ. Equ. 1255, 840–864 (2013)MathSciNetCrossRef Chen, G., Zheng, Y.: Stationary solutions of non-autonomous Maxwell-Dirac systems. J. Differ. Equ. 1255, 840–864 (2013)MathSciNetCrossRef
13.
Zurück zum Zitat Chen, J., Zhang, L.: Numerical simulation for the initial-boundary value problem of the Klein-Gordon-Zakharov equations. Acta Math. Appl. Sin. 28, 325–336 (2012)MathSciNetCrossRef Chen, J., Zhang, L.: Numerical simulation for the initial-boundary value problem of the Klein-Gordon-Zakharov equations. Acta Math. Appl. Sin. 28, 325–336 (2012)MathSciNetCrossRef
14.
Zurück zum Zitat Ding, Y., Xu, T.: On semi-classical limits of ground states of a nonlinear Maxwell-Dirac system. Calc. Var. Part. Differ. Equ. 51, 17–44 (2013)MathSciNetCrossRef Ding, Y., Xu, T.: On semi-classical limits of ground states of a nonlinear Maxwell-Dirac system. Calc. Var. Part. Differ. Equ. 51, 17–44 (2013)MathSciNetCrossRef
15.
Zurück zum Zitat Feng, Y.: Long time error analysis of the fourth-order compact finite difference methods for the nonlinear Klein-Gordon equation with weak nonlinearity. Numer. Methods Part. Differ. Equ. 37, 897–914 (2020)MathSciNetCrossRef Feng, Y.: Long time error analysis of the fourth-order compact finite difference methods for the nonlinear Klein-Gordon equation with weak nonlinearity. Numer. Methods Part. Differ. Equ. 37, 897–914 (2020)MathSciNetCrossRef
16.
Zurück zum Zitat Gong, Y., Wang, Q., Wang, Y., Cai, J.: A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation. J. Comput. Phys. 328, 354–370 (2017)MathSciNetCrossRef Gong, Y., Wang, Q., Wang, Y., Cai, J.: A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation. J. Comput. Phys. 328, 354–370 (2017)MathSciNetCrossRef
17.
Zurück zum Zitat Grünrock, A., Pecher, H.: Global solutions for the Dirac-Klein-Gordon system in two space dimensions. Commun. Part. Differ. Equ. 35, 89–112 (2010)MathSciNetCrossRef Grünrock, A., Pecher, H.: Global solutions for the Dirac-Klein-Gordon system in two space dimensions. Commun. Part. Differ. Equ. 35, 89–112 (2010)MathSciNetCrossRef
18.
Zurück zum Zitat Li, J., Wang, T.: Analysis of a conservative fourth-order compact finite difference scheme for the Klein-Gordon-Dirac equation. Comput. Appl. Math. 40, 114 (2021)MathSciNetCrossRef Li, J., Wang, T.: Analysis of a conservative fourth-order compact finite difference scheme for the Klein-Gordon-Dirac equation. Comput. Appl. Math. 40, 114 (2021)MathSciNetCrossRef
19.
Zurück zum Zitat Langville, A., Stewart, W.: The Kronecker product and stochastic automata networks. J. Comput. Appl. Math. 167, 429–447 (2004)MathSciNetCrossRef Langville, A., Stewart, W.: The Kronecker product and stochastic automata networks. J. Comput. Appl. Math. 167, 429–447 (2004)MathSciNetCrossRef
20.
Zurück zum Zitat Liao, F., Zhang, L., Wang, T.: Two energy-conserving and compact finite difference schemes for two-dimensional Schrödinger-Boussinesq equations. Numer Algo 85, 1335–1363 (2020)CrossRef Liao, F., Zhang, L., Wang, T.: Two energy-conserving and compact finite difference schemes for two-dimensional Schrödinger-Boussinesq equations. Numer Algo 85, 1335–1363 (2020)CrossRef
21.
Zurück zum Zitat Liao, F., Zhang, L., Wang, T.: Unconditional \(l^{\infty }\) convergence of a conservative compact finite difference scheme for the N-coupled Schrödinger-Boussinesq equations. Appl. Numer. Math. 138, 54–77 (2019)MathSciNetCrossRef Liao, F., Zhang, L., Wang, T.: Unconditional \(l^{\infty }\) convergence of a conservative compact finite difference scheme for the N-coupled Schrödinger-Boussinesq equations. Appl. Numer. Math. 138, 54–77 (2019)MathSciNetCrossRef
22.
Zurück zum Zitat Pan, X., Zhang, L.: On the convergence of a high-accuracy conservative scheme for the Zakharov equations. Appl. Math. Comput. 297, 79–91 (2017)MathSciNetMATH Pan, X., Zhang, L.: On the convergence of a high-accuracy conservative scheme for the Zakharov equations. Appl. Math. Comput. 297, 79–91 (2017)MathSciNetMATH
23.
Zurück zum Zitat Piero, D., Foschi, D., Selberg, S.: Local well-posedness below the charge norm for the Dirac-Klein-Dirac system in two space dimensions. J. Hyper. Differ. Equ. 4, 295–330 (2007)CrossRef Piero, D., Foschi, D., Selberg, S.: Local well-posedness below the charge norm for the Dirac-Klein-Dirac system in two space dimensions. J. Hyper. Differ. Equ. 4, 295–330 (2007)CrossRef
24.
Zurück zum Zitat Selberg, S., Tesfahun, A.: Unconditional uniqueness in the charge class for the Dirac-Klein-Gordon equations in two space dimensions. Nonlinear Differ. Equ. Appl. 20, 1055–1063 (2013)MathSciNetCrossRef Selberg, S., Tesfahun, A.: Unconditional uniqueness in the charge class for the Dirac-Klein-Gordon equations in two space dimensions. Nonlinear Differ. Equ. Appl. 20, 1055–1063 (2013)MathSciNetCrossRef
25.
Zurück zum Zitat Selberg, S., Tesfahun, A.: Low regularity well-posedness of the Dirac-Klein-Gordon equations in one space dimension. Commun. Contemp. Math. 10, 181–194 (2008)MathSciNetCrossRef Selberg, S., Tesfahun, A.: Low regularity well-posedness of the Dirac-Klein-Gordon equations in one space dimension. Commun. Contemp. Math. 10, 181–194 (2008)MathSciNetCrossRef
26.
Zurück zum Zitat Yi, W., Ruan, X., Su, C.: Optimal resolution methods for the Klein-Gordon-Dirac system in the nonrelativistic limit regime. J. Sci. Comput. 79, 1907–1935 (2019)MathSciNetCrossRef Yi, W., Ruan, X., Su, C.: Optimal resolution methods for the Klein-Gordon-Dirac system in the nonrelativistic limit regime. J. Sci. Comput. 79, 1907–1935 (2019)MathSciNetCrossRef
27.
Zurück zum Zitat Wang, T., Zhao, X., Jiang, J.: Unconditional and optimal H2 error estimate of two linear and conservative finite difference schemes for the Klein-Gordon-Schrödinger equation in high dimensions. Adv. Comput. Math. 44, 477–503 (2018)MathSciNetCrossRef Wang, T., Zhao, X., Jiang, J.: Unconditional and optimal H2 error estimate of two linear and conservative finite difference schemes for the Klein-Gordon-Schrödinger equation in high dimensions. Adv. Comput. Math. 44, 477–503 (2018)MathSciNetCrossRef
28.
Zurück zum Zitat Zhou, X., Wang, T., Ji, B., Zhang, L.: Optimal H2-error estimates of conservative compact difference scheme for the Zakharov equation in two-space dimension. Math. Methods Appl. Sci. 42, 3088–3102 (2019)MathSciNetCrossRef Zhou, X., Wang, T., Ji, B., Zhang, L.: Optimal H2-error estimates of conservative compact difference scheme for the Zakharov equation in two-space dimension. Math. Methods Appl. Sci. 42, 3088–3102 (2019)MathSciNetCrossRef
29.
Zurück zum Zitat Wang, T., Chen, J., Zhang, L.: Conservative difference methods for the Klein-Gordon-Zakharov equations. J. Comput. Appl. Math. 205, 430–452 (2007)MathSciNetCrossRef Wang, T., Chen, J., Zhang, L.: Conservative difference methods for the Klein-Gordon-Zakharov equations. J. Comput. Appl. Math. 205, 430–452 (2007)MathSciNetCrossRef
30.
Zurück zum Zitat Wang, T., Zhang, L., Jiang, Y.: Convergence of an efficient and compact finite difference scheme for the Klein-Gordon-Zakharov equation. Appl. Math. Comput. 221, 433–443 (2013)MathSciNetMATH Wang, T., Zhang, L., Jiang, Y.: Convergence of an efficient and compact finite difference scheme for the Klein-Gordon-Zakharov equation. Appl. Math. Comput. 221, 433–443 (2013)MathSciNetMATH
31.
Zurück zum Zitat Wang, T., Guo, B., Xu, Q.: Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions. J. Comput. Phys. 243, 383–399 (2013)MATH Wang, T., Guo, B., Xu, Q.: Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions. J. Comput. Phys. 243, 383–399 (2013)MATH
32.
Zurück zum Zitat Wang, T., Wang, J., Guo, B.: Two completely explicit and unconditionally convergent Fourier pseudo-spectral methods for solving the nonlinear Schrödinger equation. J. Comput. Phys. 404, 109116 (2020)MathSciNetCrossRef Wang, T., Wang, J., Guo, B.: Two completely explicit and unconditionally convergent Fourier pseudo-spectral methods for solving the nonlinear Schrödinger equation. J. Comput. Phys. 404, 109116 (2020)MathSciNetCrossRef
33.
Zurück zum Zitat Xie, J., Zhang, Z.: An analysis of implicit conservative difference solver for fractional Klein-Gordon-Zakharov system. Appl. Math. Comput. 348, 153–166 (2019)MathSciNetMATH Xie, J., Zhang, Z.: An analysis of implicit conservative difference solver for fractional Klein-Gordon-Zakharov system. Appl. Math. Comput. 348, 153–166 (2019)MathSciNetMATH
34.
Zurück zum Zitat Yi, W., Cai, Y.: Optimal error estimates of finite difference time domain methods for the Klein-Gordon-Dirac system. IMA J. Numer. Anal. 40, 1266–1293 (2020)MathSciNetCrossRef Yi, W., Cai, Y.: Optimal error estimates of finite difference time domain methods for the Klein-Gordon-Dirac system. IMA J. Numer. Anal. 40, 1266–1293 (2020)MathSciNetCrossRef
35.
Zurück zum Zitat Feng, Y.: Long time error analysis of the fourth-order compact finite difference methods for the nonlinear Klein-Gordon equation with weak nonlinearity. Numer. Methods Partial. Differ. Equ. 37, 897–914 (2021)MathSciNetCrossRef Feng, Y.: Long time error analysis of the fourth-order compact finite difference methods for the nonlinear Klein-Gordon equation with weak nonlinearity. Numer. Methods Partial. Differ. Equ. 37, 897–914 (2021)MathSciNetCrossRef
36.
Zurück zum Zitat Zhang, J., Kong, L.: New energy-preserving schemes for Klein-Gordon-Schrödinger equations. Appl. Math. Model. 40, 6969–6982 (2016)MathSciNetCrossRef Zhang, J., Kong, L.: New energy-preserving schemes for Klein-Gordon-Schrödinger equations. Appl. Math. Model. 40, 6969–6982 (2016)MathSciNetCrossRef
37.
Zurück zum Zitat Zheng, Y.: Regularity of weak solutions to a two-dimensional modified Dirac-Klein-Gordon system of equations. Commun. Math. Phys. 151, 67–87 (1993)MathSciNetCrossRef Zheng, Y.: Regularity of weak solutions to a two-dimensional modified Dirac-Klein-Gordon system of equations. Commun. Math. Phys. 151, 67–87 (1993)MathSciNetCrossRef
38.
Zurück zum Zitat Zhou, Y.: Application of discrete functional analysis to the finite difference method. International Academic Publishers (1990) Zhou, Y.: Application of discrete functional analysis to the finite difference method. International Academic Publishers (1990)
Metadaten
Titel
A mass and energy conservative fourth-order compact difference scheme for the Klein-Gordon-Dirac equations
verfasst von
Feng Liao
Fazhan Geng
Tingchun Wang
Publikationsdatum
01.03.2022
Verlag
Springer International Publishing
Erschienen in
Calcolo / Ausgabe 1/2022
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-021-00452-3

Weitere Artikel der Ausgabe 1/2022

Calcolo 1/2022 Zur Ausgabe