Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 6/2015

01.06.2015 | Original Article

A mechanical chest compressor closed-loop controller with an effective trade-off between blood flow improvement and ribs fracture reduction

verfasst von: Guang Zhang, Taihu Wu, Zhenxing Song, Haitao Wang, Hengzhi Lu, Yalin Wang, Dan Wang, Feng Chen

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chest compression (CC) is a significant emergency medical procedure for maintaining circulation during cardiac arrest. Although CC produces the necessary blood flow for patients with heart arrest, improperly deep CC will contribute significantly to the risk of chest injury. In this paper, an optimal CC closed-loop controller for a mechanical chest compressor (OCC-MCC) was developed to provide an effective trade-off between the benefit of improved blood perfusion and the risk of ribs fracture. The trade-off performance of the OCC-MCC during real automatic mechanical CCs was evaluated by comparing the OCC-MCC and the traditional mechanical CC method (TMCM) with a human circulation hardware model based on hardware simulations. A benefit factor (BF), risk factor (RF) and benefit versus risk index (BRI) were introduced in this paper for the comprehensive evaluation of risk and benefit. The OCC-MCC was developed using the LabVIEW control platform and the mechanical chest compressor (MCC) controller. PID control is also employed by MCC for effective compression depth regulation. In addition, the physiological parameters model for MCC was built based on a digital signal processor for hardware simulations. A comparison between the OCC-MCC and TMCM was then performed based on the simulation test platform which is composed of the MCC, LabVIEW control platform, physiological parameters model for MCC and the manikin. Compared with the TMCM, the OCC-MCC obtained a better trade-off and a higher BRI in seven out of a total of nine cases. With a higher mean value of cardiac output (1.35 L/min) and partial pressure of end-tidal CO2 (15.7 mmHg), the OCC-MCC obtained a larger blood flow and higher BF than TMCM (5.19 vs. 3.41) in six out of a total of nine cases. Although it is relatively difficult to maintain a stable CC depth when the chest is stiff, the OCC-MCC is still superior to the TMCM for performing safe and effective CC during CPR. The OCC-MCC is superior to the TMCM in performing safe and effective CC during CPR and can be incorporated into the current version of mechanical CC devices for high quality CPR, in both in-hospital and out-of-hospital CPR settings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Abu-Rmileh A, Garcia-Gabin W, Zambrano D et al (2010) A robust sliding mode controller with internal model for closed-loop artificial pancreas. Med Biol Eng Comput 48:1191–1201CrossRefPubMed Abu-Rmileh A, Garcia-Gabin W, Zambrano D et al (2010) A robust sliding mode controller with internal model for closed-loop artificial pancreas. Med Biol Eng Comput 48:1191–1201CrossRefPubMed
2.
Zurück zum Zitat Babbs CF (1999) CPR techniques that combine chest and abdominal compression and decompression. Circulation 100:2146–2152CrossRefPubMed Babbs CF (1999) CPR techniques that combine chest and abdominal compression and decompression. Circulation 100:2146–2152CrossRefPubMed
3.
Zurück zum Zitat Babbs CF (2005) Effects of an impedance threshold valve upon hemodynamic in Standard CPR: studies in a refined computational model. Resuscitation 66:335–345CrossRefPubMed Babbs CF (2005) Effects of an impedance threshold valve upon hemodynamic in Standard CPR: studies in a refined computational model. Resuscitation 66:335–345CrossRefPubMed
4.
Zurück zum Zitat Babbs CF (2006) Design of near-optimal waveforms for chest and abdominal compression and decompression in CPR using computer simulated evolution. Resuscitation 68:277–293CrossRefPubMed Babbs CF (2006) Design of near-optimal waveforms for chest and abdominal compression and decompression in CPR using computer simulated evolution. Resuscitation 68:277–293CrossRefPubMed
5.
Zurück zum Zitat Babbs CF, Kemeny AE, Quan W, Freeman G (2008) A new paradigm for human resuscitation research using intelligent devices. Resuscitation 77:306–315CrossRefPubMed Babbs CF, Kemeny AE, Quan W, Freeman G (2008) A new paradigm for human resuscitation research using intelligent devices. Resuscitation 77:306–315CrossRefPubMed
6.
Zurück zum Zitat Black CJ, Busuttil A, Roberson C (2004) Chest wall injuries following cardiopulmonary resuscitation. Resuscitation 63:339–343CrossRefPubMed Black CJ, Busuttil A, Roberson C (2004) Chest wall injuries following cardiopulmonary resuscitation. Resuscitation 63:339–343CrossRefPubMed
7.
Zurück zum Zitat Callaham M, Barton C (1990) Prediction of outcome of cardiopulmonary resuscitation from end-tidal carbon dioxide concentration. Crit Care Med 18:258–362CrossRef Callaham M, Barton C (1990) Prediction of outcome of cardiopulmonary resuscitation from end-tidal carbon dioxide concentration. Crit Care Med 18:258–362CrossRef
8.
Zurück zum Zitat Duma SM, Kemper AR, Stitzel JD, Mcnally C, Kennedy EA, Matsuoka F (2011) Rib fracture timing in dynamic belt tests with human cadavers. Clin Anat 24:327–338CrossRefPubMed Duma SM, Kemper AR, Stitzel JD, Mcnally C, Kennedy EA, Matsuoka F (2011) Rib fracture timing in dynamic belt tests with human cadavers. Clin Anat 24:327–338CrossRefPubMed
9.
Zurück zum Zitat Edelson DP, Abella BS, Johansen JK, Wik L, Myklebust H, Barry AM, Merchant RM, Hoek TL, Steen PA, Becker LB (2006) Effects of compression depth and pre-shock pauses predict defibrillation failure during cardiac arrest. Resuscitation 71:137–145CrossRefPubMed Edelson DP, Abella BS, Johansen JK, Wik L, Myklebust H, Barry AM, Merchant RM, Hoek TL, Steen PA, Becker LB (2006) Effects of compression depth and pre-shock pauses predict defibrillation failure during cardiac arrest. Resuscitation 71:137–145CrossRefPubMed
10.
Zurück zum Zitat Edelson DP, Litzinger B, Arora V, Walsh D, Kim S, Lauderdale DS, Vanden Hoek TL, Becker LB, Abella BS (2008) Improving in-hospital cardiac arrest process and outcomes with performance debriefing. Arch Intern Med 168:1063–1069CrossRefPubMed Edelson DP, Litzinger B, Arora V, Walsh D, Kim S, Lauderdale DS, Vanden Hoek TL, Becker LB, Abella BS (2008) Improving in-hospital cardiac arrest process and outcomes with performance debriefing. Arch Intern Med 168:1063–1069CrossRefPubMed
11.
Zurück zum Zitat Fitzgerald KR, Babbs CF, Frissora HA et al (1981) Cardiac output during cardiopulmonary resuscitation at various compression rates and durations. Am J Physiol 241:H442–H448PubMed Fitzgerald KR, Babbs CF, Frissora HA et al (1981) Cardiac output during cardiopulmonary resuscitation at various compression rates and durations. Am J Physiol 241:H442–H448PubMed
12.
Zurück zum Zitat Grmec S, Klemen P (2001) Does the end-tidal carbon dioxide (EtCO2) concentration have prognostic value during out-of-hospital cardiac arrest? Eur J Emerg. Med 8:263–269CrossRefPubMed Grmec S, Klemen P (2001) Does the end-tidal carbon dioxide (EtCO2) concentration have prognostic value during out-of-hospital cardiac arrest? Eur J Emerg. Med 8:263–269CrossRefPubMed
13.
Zurück zum Zitat Hoke RS, Chamberlain D (2004) Skeletal chest injuries secondary to cardiopulmonary resuscitation. Resuscitation 63:327–338CrossRefPubMed Hoke RS, Chamberlain D (2004) Skeletal chest injuries secondary to cardiopulmonary resuscitation. Resuscitation 63:327–338CrossRefPubMed
14.
Zurück zum Zitat Johansen JK, Myklebust H, Wik L, Fellows B, Svensson L, Sorebo H, Steen PA (2006) Quality of out-of-hospital cardiopulmonary resuscitation with real time automated feedback: a prospective interventional study. Resuscitation 71:283–292CrossRef Johansen JK, Myklebust H, Wik L, Fellows B, Svensson L, Sorebo H, Steen PA (2006) Quality of out-of-hospital cardiopulmonary resuscitation with real time automated feedback: a prospective interventional study. Resuscitation 71:283–292CrossRef
15.
Zurück zum Zitat Kemper AR, Kennedy EA, Mcnally C, Manoogian SJ, Stitzel JD, Duma SM (2011) Reducing chest injuries in automobile collisions: rib fracture timing and implications for thoracic injury criteria. Ann Biomed Eng 39:2141–2151CrossRefPubMed Kemper AR, Kennedy EA, Mcnally C, Manoogian SJ, Stitzel JD, Duma SM (2011) Reducing chest injuries in automobile collisions: rib fracture timing and implications for thoracic injury criteria. Ann Biomed Eng 39:2141–2151CrossRefPubMed
16.
Zurück zum Zitat Lewis LM, Stothert J, Standeven J, Chandel B, Kurtz M, Fortney J (1992) Correlation of end-tidal CO2 to cerebral perfusion during CPR. Ann Emerg Med 21:1131–1134CrossRefPubMed Lewis LM, Stothert J, Standeven J, Chandel B, Kurtz M, Fortney J (1992) Correlation of end-tidal CO2 to cerebral perfusion during CPR. Ann Emerg Med 21:1131–1134CrossRefPubMed
17.
Zurück zum Zitat Neumar RW, Otto CW, Link MS, Kronick SL, Shuster M, Callaway CW, Kudenchuk PJ, Ornato JP, McNally B, Silvers SM, Passman RS, White RD, Hess EP, Tang W, Davis D, Sinz E, Morrison LJ (2010) Adult advanced cardiovascular life support. 2010 American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular Care. Circulation 122:S729–S767CrossRefPubMed Neumar RW, Otto CW, Link MS, Kronick SL, Shuster M, Callaway CW, Kudenchuk PJ, Ornato JP, McNally B, Silvers SM, Passman RS, White RD, Hess EP, Tang W, Davis D, Sinz E, Morrison LJ (2010) Adult advanced cardiovascular life support. 2010 American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular Care. Circulation 122:S729–S767CrossRefPubMed
18.
Zurück zum Zitat Odegaard S, Kramer-Johansen J, Bromley A et al (2007) Chest compressions by ambulance personnel on chests with variable stiffness: abilities and attitudes. Resuscitation 74:127–134CrossRefPubMed Odegaard S, Kramer-Johansen J, Bromley A et al (2007) Chest compressions by ambulance personnel on chests with variable stiffness: abilities and attitudes. Resuscitation 74:127–134CrossRefPubMed
19.
Zurück zum Zitat Paradis NA, Martin GB, Goetting MG et al (1989) Simultaneous aortic, jugular bulb, and right atrial pressures during cardiopulmonary resuscitation in humans. Circulation 80:361–368CrossRefPubMed Paradis NA, Martin GB, Goetting MG et al (1989) Simultaneous aortic, jugular bulb, and right atrial pressures during cardiopulmonary resuscitation in humans. Circulation 80:361–368CrossRefPubMed
20.
Zurück zum Zitat Paradis NA, Martin GB, Rivers EP, Goetting MG, Appleton TJ, Feingold M, Nowak RM (1990) Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA 263:1106–1113CrossRefPubMed Paradis NA, Martin GB, Rivers EP, Goetting MG, Appleton TJ, Feingold M, Nowak RM (1990) Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA 263:1106–1113CrossRefPubMed
21.
Zurück zum Zitat Rivers EP, Martin GB, Rady MY, Smithline HA, Appleton TJ, Nowak RM (1992) Coronary perfusion pressure, end-tidal carbon dioxide concentration and continuous central venous oxygen saturation monitoring as a predictor of outcome during human CPR. Crit Care Med 20:S85–S86CrossRef Rivers EP, Martin GB, Rady MY, Smithline HA, Appleton TJ, Nowak RM (1992) Coronary perfusion pressure, end-tidal carbon dioxide concentration and continuous central venous oxygen saturation monitoring as a predictor of outcome during human CPR. Crit Care Med 20:S85–S86CrossRef
22.
Zurück zum Zitat Sanders A, Atlas M, Ewy G, Kern K, Bragg S (1985) Expired pCO2 as an index of coronary perfusion pressure. Am J Emerg Med 3:147–149CrossRefPubMed Sanders A, Atlas M, Ewy G, Kern K, Bragg S (1985) Expired pCO2 as an index of coronary perfusion pressure. Am J Emerg Med 3:147–149CrossRefPubMed
23.
Zurück zum Zitat Sanders AB, Ewy GA, Bragg S, Atlas M, Kern KB (1985) Expired PCO2 as a prognostic indicator of successful resuscitation from cardiac arrest. Ann Emerg Med 14:948–952CrossRefPubMed Sanders AB, Ewy GA, Bragg S, Atlas M, Kern KB (1985) Expired PCO2 as a prognostic indicator of successful resuscitation from cardiac arrest. Ann Emerg Med 14:948–952CrossRefPubMed
24.
Zurück zum Zitat Sanders AB, Kern KB, Otto CW, Milander MM, Ewy GA (1989) End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation. JAMA 262:1347–1351CrossRefPubMed Sanders AB, Kern KB, Otto CW, Milander MM, Ewy GA (1989) End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation. JAMA 262:1347–1351CrossRefPubMed
25.
Zurück zum Zitat Tsitlik JE, Weisfeldt ML, Chandra N, Effron MB, Halperin HR, Levin HR (1983) Elastic properties of the human chest during cardiopulmonary resuscitation. Crit Care Med 11:685–692CrossRefPubMed Tsitlik JE, Weisfeldt ML, Chandra N, Effron MB, Halperin HR, Levin HR (1983) Elastic properties of the human chest during cardiopulmonary resuscitation. Crit Care Med 11:685–692CrossRefPubMed
26.
Zurück zum Zitat Varon J, Marik PE, Fromm RE (1998) Cardiopulmonary resuscitation: a review for clinicians. Resuscitation 36:133–145CrossRefPubMed Varon J, Marik PE, Fromm RE (1998) Cardiopulmonary resuscitation: a review for clinicians. Resuscitation 36:133–145CrossRefPubMed
27.
Zurück zum Zitat Werner JA, Greene L, Janko CL, Cobb LA (1981) Visualization of cardiac valve motion in man during external chest compression using twodimensional echocardiography. Circulation 63:1417–1421CrossRefPubMed Werner JA, Greene L, Janko CL, Cobb LA (1981) Visualization of cardiac valve motion in man during external chest compression using twodimensional echocardiography. Circulation 63:1417–1421CrossRefPubMed
28.
Zurück zum Zitat Zhang G, Zheng J, Wu J, Wu T (2012) An optimal closed-loop control strategy for mechanical chest compression devices: a trade-off between the risk of chest injury and the benefit of enhanced blood flow. Comput Methods Program Biomed 108:288–298CrossRef Zhang G, Zheng J, Wu J, Wu T (2012) An optimal closed-loop control strategy for mechanical chest compression devices: a trade-off between the risk of chest injury and the benefit of enhanced blood flow. Comput Methods Program Biomed 108:288–298CrossRef
29.
Zurück zum Zitat Zhang G, Zheng J, Wu J, Wu T (2012) Closed-loop controller for chest compression during cardiopulmonary resuscitation: a computer simulation study. J Med Biol Eng 32:313–322CrossRef Zhang G, Zheng J, Wu J, Wu T (2012) Closed-loop controller for chest compression during cardiopulmonary resuscitation: a computer simulation study. J Med Biol Eng 32:313–322CrossRef
Metadaten
Titel
A mechanical chest compressor closed-loop controller with an effective trade-off between blood flow improvement and ribs fracture reduction
verfasst von
Guang Zhang
Taihu Wu
Zhenxing Song
Haitao Wang
Hengzhi Lu
Yalin Wang
Dan Wang
Feng Chen
Publikationsdatum
01.06.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 6/2015
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-015-1258-y

Weitere Artikel der Ausgabe 6/2015

Medical & Biological Engineering & Computing 6/2015 Zur Ausgabe