Skip to main content
Erschienen in: Microsystem Technologies 6/2020

13.01.2020 | Technical Paper

A MEMS based Fabry–Pérot accelerometer with high resolution

verfasst von: Minghui Zhao, Kangli Jiang, Hongwu Bai, Hairong Wang, Xueyong Wei

Erschienen in: Microsystem Technologies | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Optical MEMS has become exceedingly popular because of its high performance and resistance to electromagnetic interference. A MEMS based Fabry–Pérot accelerometer consisting of a G-shaped mass-spring structure sensing chip, laser diode, cube beam splitter and photo translating system integrated by 3D printed sensor package is investigated. The sensitivity and resolution calibrated by intensity demodulation method are respectively, 183.793 V/g and 300 ng. The results show that the adopted G-shaped cantilever-mass structure sensing chip combined with the Fabry–Pérot interfere technology can obtain good performance, and the 3D printed sensor package makes the interference optical path and accelerometer more robust and portable.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bhattacharya S, Basumallick N, Sengupta S, Biswas P, Bandyopadhyay S (2016) Sensitivity enhancement of an in-line fiber optic fabry–perot interferometric vibration sensor. In: International conference on fiber optics and photonics Bhattacharya S, Basumallick N, Sengupta S, Biswas P, Bandyopadhyay S (2016) Sensitivity enhancement of an in-line fiber optic fabry–perot interferometric vibration sensor. In: International conference on fiber optics and photonics
Zurück zum Zitat Bruce CF (1967) Interference accelerometer. Rev Sci Instrum 38(8):1090–1093CrossRef Bruce CF (1967) Interference accelerometer. Rev Sci Instrum 38(8):1090–1093CrossRef
Zurück zum Zitat Cheng JM, Wu XQ, Li SL, Ge Q, Guang D, Yu BL (2018) A novel and miniaturized FPI accelerometer based on a spherical air cavity at fiber end. In: International conference on optical instruments and technology 2017: advanced optical sensors and applications Cheng JM, Wu XQ, Li SL, Ge Q, Guang D, Yu BL (2018) A novel and miniaturized FPI accelerometer based on a spherical air cavity at fiber end. In: International conference on optical instruments and technology 2017: advanced optical sensors and applications
Zurück zum Zitat Eren H (2000) Acceleration, vibration, and shock measurement: in measurement, instrumentation, and sensors handbook. CRC Press, New York ch. 17 Eren H (2000) Acceleration, vibration, and shock measurement: in measurement, instrumentation, and sensors handbook. CRC Press, New York ch. 17
Zurück zum Zitat Fabry Ch, Perot A (1897) Sur les franges des lames minces argentées et leur application à la mesure de petites épaisseurs d’air. Ann Chim Phys 12:459–501MATH Fabry Ch, Perot A (1897) Sur les franges des lames minces argentées et leur application à la mesure de petites épaisseurs d’air. Ann Chim Phys 12:459–501MATH
Zurück zum Zitat Fedder GK (1994) Simulation of microelectromechanical systems. University of California, Berkeley Fedder GK (1994) Simulation of microelectromechanical systems. University of California, Berkeley
Zurück zum Zitat Fralick MS (2012) Noise compensation and bias stability improvement methods for a micro-optical-electrical-mechanical accelerometer. San Diego State University Fralick MS (2012) Noise compensation and bias stability improvement methods for a micro-optical-electrical-mechanical accelerometer. San Diego State University
Zurück zum Zitat Gerberding O, Cervantes FG, Melcher J, Pratt JR, Taylor JM (2015) Optomechanical reference accelerometer. Metrologia 52(5):654–665CrossRef Gerberding O, Cervantes FG, Melcher J, Pratt JR, Taylor JM (2015) Optomechanical reference accelerometer. Metrologia 52(5):654–665CrossRef
Zurück zum Zitat Gerges AS, Newson TP, Jones JD, Jackson DA (1989) High-sensitivity fiber-optic accelerometer. Opt Lett 14(4):251–253CrossRef Gerges AS, Newson TP, Jones JD, Jackson DA (1989) High-sensitivity fiber-optic accelerometer. Opt Lett 14(4):251–253CrossRef
Zurück zum Zitat Lin Q, Chen L, Li S, Wu X (2011) A high-resolution fiber optic accelerometer based on intracavity phase-generated carrier (PGC) modulation. Meas Sci Technol 22(1):15303CrossRef Lin Q, Chen L, Li S, Wu X (2011) A high-resolution fiber optic accelerometer based on intracavity phase-generated carrier (PGC) modulation. Meas Sci Technol 22(1):15303CrossRef
Zurück zum Zitat Lu QB, Wang C, Bai J, Wang KW, Lou SQ, Jiao XF, Han DD, Yang GG, Liu D, Yang YY (2016) Minimizing cross-axis sensitivity in grating- based optomechanical accelerometers. Opt Express 26(12):9094–9111CrossRef Lu QB, Wang C, Bai J, Wang KW, Lou SQ, Jiao XF, Han DD, Yang GG, Liu D, Yang YY (2016) Minimizing cross-axis sensitivity in grating- based optomechanical accelerometers. Opt Express 26(12):9094–9111CrossRef
Zurück zum Zitat Metcalfe Michael (2014) Applications of cavity optomechanics. Appl Phys Rev 1(3):5880–5885CrossRef Metcalfe Michael (2014) Applications of cavity optomechanics. Appl Phys Rev 1(3):5880–5885CrossRef
Zurück zum Zitat Perez MA, Shkel M (2008) Design and demonstration of a bulk micromachined Fabry-Perot μg-resolution accelerometer. IEEE Sens J 7(12):1653–1662CrossRef Perez MA, Shkel M (2008) Design and demonstration of a bulk micromachined Fabry-Perot μg-resolution accelerometer. IEEE Sens J 7(12):1653–1662CrossRef
Zurück zum Zitat Ran ZL, Lu E, Rao YJ, Ni M, Peng F, Zeng DH (2011) Fiber-optic Fabry–Pérot interferometer tip accelerometer fabricated by laser-micromachining. In: 21st international conference on optical fiber sensors 7753, 775318-775318-4 Ran ZL, Lu E, Rao YJ, Ni M, Peng F, Zeng DH (2011) Fiber-optic Fabry–Pérot interferometer tip accelerometer fabricated by laser-micromachining. In: 21st international conference on optical fiber sensors 7753, 775318-775318-4
Zurück zum Zitat Sönmez Uğur, Külah Haluk, Akın Tayfun (2014) A ΣΔ micro accelerometer with 6 µg/√Hz resolution and 130 dB dynamic range. Analog Integr Circ Sig Process 81(2):471–485CrossRef Sönmez Uğur, Külah Haluk, Akın Tayfun (2014) A ΣΔ micro accelerometer with 6 µg/√Hz resolution and 130 dB dynamic range. Analog Integr Circ Sig Process 81(2):471–485CrossRef
Zurück zum Zitat Taghavi M, Latifi H, Parsanasab GM, Abedi A, Nikbakht H, Sharifi MJ (2019) Simulation, fabrication and characterization of a sensitive SU-8-based Fabry-Perot MOEMS accelerometer. J Lightw Technol Taghavi M, Latifi H, Parsanasab GM, Abedi A, Nikbakht H, Sharifi MJ (2019) Simulation, fabrication and characterization of a sensitive SU-8-based Fabry-Perot MOEMS accelerometer. J Lightw Technol
Zurück zum Zitat Thurner K, Quacquarelli FP, Braun PF, Savio CD, Karrai K (2015) Fiber-based distance sensing interferometry. Appl Opt 54(10):3051–3063CrossRef Thurner K, Quacquarelli FP, Braun PF, Savio CD, Karrai K (2015) Fiber-based distance sensing interferometry. Appl Opt 54(10):3051–3063CrossRef
Zurück zum Zitat Wang Z, Zhang W, Han J, Huang W, Li F (2014) Diaphragm-based fiber optic fabry–perot accelerometer with high consistency. J Lightw Technol 32(24):4810–4815CrossRef Wang Z, Zhang W, Han J, Huang W, Li F (2014) Diaphragm-based fiber optic fabry–perot accelerometer with high consistency. J Lightw Technol 32(24):4810–4815CrossRef
Zurück zum Zitat Wang YG, Zhang J, Yao ZC, Lin C, Zhou T, Su Y, Zhao J (2018) A MEMS resonant accelerometer with high performance of temperature based on electrostatic spring softening and continuous ring-down technique. IEEE Sens J 18(17):7023–7031CrossRef Wang YG, Zhang J, Yao ZC, Lin C, Zhou T, Su Y, Zhao J (2018) A MEMS resonant accelerometer with high performance of temperature based on electrostatic spring softening and continuous ring-down technique. IEEE Sens J 18(17):7023–7031CrossRef
Zurück zum Zitat Waters RL, Aklufi ME (2002) Micromachined Fabry–Pérot interferometer for motion detection. Appl Phys Lett 81(18):3320–3322CrossRef Waters RL, Aklufi ME (2002) Micromachined Fabry–Pérot interferometer for motion detection. Appl Phys Lett 81(18):3320–3322CrossRef
Zurück zum Zitat Zandi K, Wong B, Zou J, Kruzelecky RV, Jamroz W, Peter YA (2010) In-plane silicon-on-insulator optical MEMS accelerometer using waveguide Fabry–Pérot microcavity with silicon/air Bragg mirrors. In: IEEE International conference on micro electro mechanical systems IEEE, pp 839–842 Zandi K, Wong B, Zou J, Kruzelecky RV, Jamroz W, Peter YA (2010) In-plane silicon-on-insulator optical MEMS accelerometer using waveguide Fabry–Pérot microcavity with silicon/air Bragg mirrors. In: IEEE International conference on micro electro mechanical systems IEEE, pp 839–842
Zurück zum Zitat Zandi K, Belanger S, André J, Peter YA (2012) Design and demonstration of an in-plane silicon-on-insulator optical mems Fabry–Pérot-based accelerometer integrated with channel waveguides. J Microelectromech Syst 21(6):1464–1470 Zandi K, Belanger S, André J, Peter YA (2012) Design and demonstration of an in-plane silicon-on-insulator optical mems Fabry–Pérot-based accelerometer integrated with channel waveguides. J Microelectromech Syst 21(6):1464–1470
Metadaten
Titel
A MEMS based Fabry–Pérot accelerometer with high resolution
verfasst von
Minghui Zhao
Kangli Jiang
Hongwu Bai
Hairong Wang
Xueyong Wei
Publikationsdatum
13.01.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 6/2020
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-020-04747-3

Weitere Artikel der Ausgabe 6/2020

Microsystem Technologies 6/2020 Zur Ausgabe

Neuer Inhalt