Skip to main content
Erschienen in: Microsystem Technologies 9/2018

23.02.2018 | Technical Paper

A MEMS based piezoelectric vibration energy harvester for fault monitoring system

verfasst von: Licheng Deng, Yuming Fang, Debo Wang, Zhiyu Wen

Erschienen in: Microsystem Technologies | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstracts

Normally, the ambient vibrations demonstrates low acceleration amplitude (< 1 g) and low frequency (60–300 Hz), so most researchers focus on the study of the low frequency vibration energy harvester at present. However, the power output of the low frequency vibration energy harvester is low and thus difficult to meet the application requirement. In this paper, a MEMS based piezoelectric vibration energy harvester was designed and fabricated for the application of the fault monitoring system for ship engine which vibrates at high acceleration amplitude and high frequency. Firstly, the vibration characteristics of the ship engine was tested. Under normal operating conditions, the vibration frequency and acceleration of the ship engine are 600–700 Hz and 2–4 g, respectively. And then a MEMS based high frequency piezoelectric vibration energy harvester was designed under the vibration environment. Finally, the designed harvester was fabricated and evaluated. The voltage and power output of the fabricated harvester is 5.81 V and 660.1 μW, which meet the application requirements of the fault monitoring system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Deng L, Wen Z, Zhao X et al (2014) High voltage output mems vibration energy harvester in d 31 mode with pzt thin film. J Microelectromech Syst 23(4):855–861CrossRef Deng L, Wen Z, Zhao X et al (2014) High voltage output mems vibration energy harvester in d 31 mode with pzt thin film. J Microelectromech Syst 23(4):855–861CrossRef
Zurück zum Zitat Deng L, Wen Q, Jiang S et al (2015) On the optimization of piezoelectric vibration energy harvester. J Intell Mater Syst Struct 26(18):2489–2499CrossRef Deng L, Wen Q, Jiang S et al (2015) On the optimization of piezoelectric vibration energy harvester. J Intell Mater Syst Struct 26(18):2489–2499CrossRef
Zurück zum Zitat Fan F, Tian Z, Wang ZL (2012) Flexible triboelectric generator. Nano Energy 1(2):328–334CrossRef Fan F, Tian Z, Wang ZL (2012) Flexible triboelectric generator. Nano Energy 1(2):328–334CrossRef
Zurück zum Zitat He X, Teh KS, Li S et al (2017) Modeling and experimental verification of an impact-based piezoelectric vibration energy harvester with a rolling proof mass. Sens Actuators A 259:171–179CrossRef He X, Teh KS, Li S et al (2017) Modeling and experimental verification of an impact-based piezoelectric vibration energy harvester with a rolling proof mass. Sens Actuators A 259:171–179CrossRef
Zurück zum Zitat Jafari H, Ghodsi A, Azizi S et al (2017) Energy harvesting based on magnetostriction, for low frequency excitations. Energy 124:1–8CrossRef Jafari H, Ghodsi A, Azizi S et al (2017) Energy harvesting based on magnetostriction, for low frequency excitations. Energy 124:1–8CrossRef
Zurück zum Zitat Janphuang P, Lockhart R, Uffer N et al (2014) Vibrational piezoelectric energy harvesters based on thinned bulk PZT sheets fabricated at the wafer level. Sens Actuators A 210(1):1–9CrossRef Janphuang P, Lockhart R, Uffer N et al (2014) Vibrational piezoelectric energy harvesters based on thinned bulk PZT sheets fabricated at the wafer level. Sens Actuators A 210(1):1–9CrossRef
Zurück zum Zitat Jia Y, Seshia AA (2016) Power optimization by mass tuning for MEMS piezoelectric cantilever vibration energy harvesting. J Microelectromech Syst 25(1):108–117CrossRef Jia Y, Seshia AA (2016) Power optimization by mass tuning for MEMS piezoelectric cantilever vibration energy harvesting. J Microelectromech Syst 25(1):108–117CrossRef
Zurück zum Zitat Kobayashi T, Ichiki M, Kondou R et al (2007) Degradation in the ferroelectric and piezoelectric properties of Pb (Zr, Ti) O3 thin films derived from a MEMS micro-fabrication process. J Micromech Microeng 17(17):1238–1241CrossRef Kobayashi T, Ichiki M, Kondou R et al (2007) Degradation in the ferroelectric and piezoelectric properties of Pb (Zr, Ti) O3 thin films derived from a MEMS micro-fabrication process. J Micromech Microeng 17(17):1238–1241CrossRef
Zurück zum Zitat Kobayashi T, Ichiki M, Kondou R et al (2008) Fabrication of piezoelectric microcantilevers using LaNiO3 buffered Pb(Zr, Ti)O3 thin film. J Micromech Microeng 18(3):567–589 Kobayashi T, Ichiki M, Kondou R et al (2008) Fabrication of piezoelectric microcantilevers using LaNiO3 buffered Pb(Zr, Ti)O3 thin film. J Micromech Microeng 18(3):567–589
Zurück zum Zitat Li H, Tian C, Deng ZD (2014) Energy harvesting from low frequency applications using piezoelectric materials. Appl Phys Rev 1(4):41301CrossRef Li H, Tian C, Deng ZD (2014) Energy harvesting from low frequency applications using piezoelectric materials. Appl Phys Rev 1(4):41301CrossRef
Zurück zum Zitat Li S, Crovetto A, Peng Z et al (2016a) Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency. Sens Actuators A 247:547–554CrossRef Li S, Crovetto A, Peng Z et al (2016a) Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency. Sens Actuators A 247:547–554CrossRef
Zurück zum Zitat Li S, Peng Z, Zhang A et al (2016b) Dual resonant structure for energy harvesting from random vibration sources at low frequency. AIP Adv 6(1):15019CrossRef Li S, Peng Z, Zhang A et al (2016b) Dual resonant structure for energy harvesting from random vibration sources at low frequency. AIP Adv 6(1):15019CrossRef
Zurück zum Zitat Liu S, Gu F, Ball (2006) Detection of engine valve faults by vibration signals measured on the cylinder head. Proceed Inst Mech Eng Part D J Automob Eng 220(3):379–386CrossRef Liu S, Gu F, Ball (2006) Detection of engine valve faults by vibration signals measured on the cylinder head. Proceed Inst Mech Eng Part D J Automob Eng 220(3):379–386CrossRef
Zurück zum Zitat Lu Y, Cottone F, Boisseau S et al (2015) A nonlinear MEMS electrostatic kinetic energy harvester for human-powered biomedical devices. Appl Phys Lett 107(25):253902CrossRef Lu Y, Cottone F, Boisseau S et al (2015) A nonlinear MEMS electrostatic kinetic energy harvester for human-powered biomedical devices. Appl Phys Lett 107(25):253902CrossRef
Zurück zum Zitat Priya S, Song H, Zhou Y et al (2017) A review on piezoelectric energy harvesting: materials, methods, and circuits. Energy Harvest Syst 4(1):3–39 Priya S, Song H, Zhou Y et al (2017) A review on piezoelectric energy harvesting: materials, methods, and circuits. Energy Harvest Syst 4(1):3–39
Zurück zum Zitat Roundy SJ (2003) Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. University of California, Berkeley Roundy SJ (2003) Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. University of California, Berkeley
Zurück zum Zitat Sabato A, Niezrecki C, Fortino G (2017) Wireless MEMS-based accelerometer sensor boards for structural vibration monitoring: a review. IEEE Sens J 17(2):226–235CrossRef Sabato A, Niezrecki C, Fortino G (2017) Wireless MEMS-based accelerometer sensor boards for structural vibration monitoring: a review. IEEE Sens J 17(2):226–235CrossRef
Zurück zum Zitat Shaikh FK, Zeadally S (2016) Energy harvesting in wireless sensor networks: a comprehensive review. Renew Sustain Energy Rev 55:1041–1054CrossRef Shaikh FK, Zeadally S (2016) Energy harvesting in wireless sensor networks: a comprehensive review. Renew Sustain Energy Rev 55:1041–1054CrossRef
Zurück zum Zitat Tan Y, Dong Y, Wang X (2017) Review of MEMS electromagnetic vibration energy harvester. J Microelectromech Syst 26(1):1–16CrossRef Tan Y, Dong Y, Wang X (2017) Review of MEMS electromagnetic vibration energy harvester. J Microelectromech Syst 26(1):1–16CrossRef
Zurück zum Zitat Wei C, Jing X (2017) A comprehensive review on vibration energy harvesting: modelling and realization. Renew Sustain Energy Rev 74:1–18MathSciNetCrossRef Wei C, Jing X (2017) A comprehensive review on vibration energy harvesting: modelling and realization. Renew Sustain Energy Rev 74:1–18MathSciNetCrossRef
Zurück zum Zitat Yi Z, Yang B, Li G et al (2017) High performance bimorph piezoelectric MEMS harvester via bulk PZT thick films on thin beryllium-bronze substrate. Appl Phys Lett 111(1):13902CrossRef Yi Z, Yang B, Li G et al (2017) High performance bimorph piezoelectric MEMS harvester via bulk PZT thick films on thin beryllium-bronze substrate. Appl Phys Lett 111(1):13902CrossRef
Zurück zum Zitat Yildirim T, Ghayesh MH, Li W et al (2016) A review on performance enhancement techniques for ambient vibration energy harvesters. Renew Sustain Energy Rev 71:435–449CrossRef Yildirim T, Ghayesh MH, Li W et al (2016) A review on performance enhancement techniques for ambient vibration energy harvesters. Renew Sustain Energy Rev 71:435–449CrossRef
Zurück zum Zitat Zhang H, Jiang S, He X (2017) Impact-based piezoelectric energy harvester for multidimensional, low-level, broadband, and low-frequency vibrations. Appl Phys Lett 110(22):223902CrossRef Zhang H, Jiang S, He X (2017) Impact-based piezoelectric energy harvester for multidimensional, low-level, broadband, and low-frequency vibrations. Appl Phys Lett 110(22):223902CrossRef
Metadaten
Titel
A MEMS based piezoelectric vibration energy harvester for fault monitoring system
verfasst von
Licheng Deng
Yuming Fang
Debo Wang
Zhiyu Wen
Publikationsdatum
23.02.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 9/2018
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3784-7

Weitere Artikel der Ausgabe 9/2018

Microsystem Technologies 9/2018 Zur Ausgabe

Neuer Inhalt