Skip to main content
Erschienen in: Computational Mechanics 4/2017

19.12.2016 | Original Paper

A mesh deformation technique based on two-step solution of the elasticity equations

verfasst von: Guo Huang, Haiming Huang, Jin Guo

Erschienen in: Computational Mechanics | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the computation of fluid mechanics problems with moving boundaries, including fluid-structure interaction, fluid mesh deformation is a common problem to be solved. An automatic mesh deformation technique for large deformations of the fluid mesh is presented on the basis of a pseudo-solid method in which the fluid mesh motion is governed by the equations of elasticity. A two-dimensional mathematical model of a linear elastic body is built by using the finite element method. The numerical result shows that the proposed method has a better performance in moving the fluid mesh without producing distorted elements than that of the classic one-step methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Radtke L, Larena-Avellaneda A, Debus ES, Düster A (2016) Convergence acceleration for partitioned simulations of the fluid-structure interaction in arteries. Comput Mech 57:901–920MathSciNetCrossRefMATH Radtke L, Larena-Avellaneda A, Debus ES, Düster A (2016) Convergence acceleration for partitioned simulations of the fluid-structure interaction in arteries. Comput Mech 57:901–920MathSciNetCrossRefMATH
2.
Zurück zum Zitat Takizawa K, Tezduyar TE, Boben J, Kostov N, Boswell C, Buscher A (2013) Fluid-structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput Mech 52:1351–1364CrossRefMATH Takizawa K, Tezduyar TE, Boben J, Kostov N, Boswell C, Buscher A (2013) Fluid-structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput Mech 52:1351–1364CrossRefMATH
3.
Zurück zum Zitat Xu J, Huang HM, Huang G, Mo S (2015) Numerical simulation of supersonic gap flow. Plos ONE 10:e0117012CrossRef Xu J, Huang HM, Huang G, Mo S (2015) Numerical simulation of supersonic gap flow. Plos ONE 10:e0117012CrossRef
4.
Zurück zum Zitat Huang HM, Huang G (2015) Effects of width-to-depth ratio on heat transfer coefficient for gap. Int J Numer Methods Heat Fluid Flow 25:803–809CrossRef Huang HM, Huang G (2015) Effects of width-to-depth ratio on heat transfer coefficient for gap. Int J Numer Methods Heat Fluid Flow 25:803–809CrossRef
5.
Zurück zum Zitat Huang G, Huang HM (2016) Numerical investigation of heat flux distribution in a deep gap based on chemical equilibrium. Int J Numer Methods Heat Fluid Flow. doi:10.1108/HFF-03-2016-0119 Huang G, Huang HM (2016) Numerical investigation of heat flux distribution in a deep gap based on chemical equilibrium. Int J Numer Methods Heat Fluid Flow. doi:10.​1108/​HFF-03-2016-0119
6.
Zurück zum Zitat Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195:2002–2027MathSciNetCrossRefMATH Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195:2002–2027MathSciNetCrossRefMATH
7.
Zurück zum Zitat Tezduyar TE, Sathe S (2007) Modeling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Meth Fluids 54:855–900CrossRefMATH Tezduyar TE, Sathe S (2007) Modeling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Meth Fluids 54:855–900CrossRefMATH
8.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, New YorkCrossRefMATH Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, New YorkCrossRefMATH
9.
Zurück zum Zitat Zhao X, Sun Z, Tang L, Zheng G (2011) Coupled flow-thermal-structural analysis of hypersonic aerodynamically heated cylindrical leading edge. Eng Appl Comput Fluid Mech 5:170–179 Zhao X, Sun Z, Tang L, Zheng G (2011) Coupled flow-thermal-structural analysis of hypersonic aerodynamically heated cylindrical leading edge. Eng Appl Comput Fluid Mech 5:170–179
10.
Zurück zum Zitat Ooi EH, Popov V (2013) A simplified approach for imposing the boundary conditions in the local boundary integral equation method. Comput Mech 51:717–729MathSciNetCrossRefMATH Ooi EH, Popov V (2013) A simplified approach for imposing the boundary conditions in the local boundary integral equation method. Comput Mech 51:717–729MathSciNetCrossRefMATH
11.
Zurück zum Zitat Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces–The deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351MathSciNetCrossRefMATH Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces–The deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351MathSciNetCrossRefMATH
12.
Zurück zum Zitat Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces–The deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353–371MathSciNetCrossRefMATH Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces–The deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353–371MathSciNetCrossRefMATH
13.
Zurück zum Zitat Stein K, Tezduyar TE, Benney R (2003) Mesh moving techniques for fluid-structure interactions with large displacements. J Appl Mech 70:58–63CrossRefMATH Stein K, Tezduyar TE, Benney R (2003) Mesh moving techniques for fluid-structure interactions with large displacements. J Appl Mech 70:58–63CrossRefMATH
14.
Zurück zum Zitat Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193:2019–2032CrossRefMATH Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193:2019–2032CrossRefMATH
15.
Zurück zum Zitat Yang Z, Mavriplis DJ (2007) Mesh deformation strategy optimized by the adjoint method on unstructured meshes. AIAA J 45:2885–2896CrossRef Yang Z, Mavriplis DJ (2007) Mesh deformation strategy optimized by the adjoint method on unstructured meshes. AIAA J 45:2885–2896CrossRef
16.
Zurück zum Zitat Gao XW, Chen PC, Tang L (2002) Deforming mesh for computational aeroelasticity using a nonlinear elastic boundary element method. AIAA J 40:1512–1517CrossRef Gao XW, Chen PC, Tang L (2002) Deforming mesh for computational aeroelasticity using a nonlinear elastic boundary element method. AIAA J 40:1512–1517CrossRef
17.
Zurück zum Zitat Bar-Yoseph PZ, Mereu S, Chippada S, Kalro VJ (2001) Automatic monitoring of element shape quality in 2-D and 3-D computational mesh dynamics. Comput Mech 27:378–395CrossRefMATH Bar-Yoseph PZ, Mereu S, Chippada S, Kalro VJ (2001) Automatic monitoring of element shape quality in 2-D and 3-D computational mesh dynamics. Comput Mech 27:378–395CrossRefMATH
18.
Zurück zum Zitat Johnson AA, Tezduyar TE (1996) Simulation of multiple spheres falling in a liquid-filled tube. Comput Methods Appl Mech Eng 134:351–373MathSciNetCrossRefMATH Johnson AA, Tezduyar TE (1996) Simulation of multiple spheres falling in a liquid-filled tube. Comput Methods Appl Mech Eng 134:351–373MathSciNetCrossRefMATH
19.
Zurück zum Zitat Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23:130–143CrossRefMATH Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23:130–143CrossRefMATH
20.
Zurück zum Zitat Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012) Space-time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech 50:743–760CrossRefMATH Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012) Space-time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech 50:743–760CrossRefMATH
21.
Zurück zum Zitat Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid-structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Meth Fluids 65:271–285CrossRefMATH Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid-structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Meth Fluids 65:271–285CrossRefMATH
22.
Zurück zum Zitat Takizawa K, Spielman T, Tezduyar TE (2011) Space-time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48:345–364CrossRefMATH Takizawa K, Spielman T, Tezduyar TE (2011) Space-time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48:345–364CrossRefMATH
23.
Zurück zum Zitat Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the stabilized finite element methods: space-time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-vol 246/AMD-vol 143. ASME, New York, pp 7–24 Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the stabilized finite element methods: space-time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-vol 246/AMD-vol 143. ASME, New York, pp 7–24
Metadaten
Titel
A mesh deformation technique based on two-step solution of the elasticity equations
verfasst von
Guo Huang
Haiming Huang
Jin Guo
Publikationsdatum
19.12.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 4/2017
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-016-1367-y

Weitere Artikel der Ausgabe 4/2017

Computational Mechanics 4/2017 Zur Ausgabe

Neuer Inhalt