Skip to main content

2018 | OriginalPaper | Buchkapitel

A Micromachined Reconfigurable Attenuator

verfasst von : Zewen Liu, Xin Guo

Erschienen in: Micro Electro Mechanical Systems

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As the essential power control and adjustment component, microwave power attenuator has been widely applied in spectrum analyzer, network analyzer, receivers, and other microwave instrument systems. There has been significant interest in developing miniaturized microwave devices with small geometric dimension for commercial microwave test systems. Traditional attenuator with large size is difficult to integrate with IC due to its cumbersome mechanical relay or switches. Radio frequency microelectromechanical system (RF MEMS) switches present many advantages such as less insertion loss, higher isolation, better linearity, and lower power consumption and more importantly, its small size. It has absorbed great attention for the purpose of miniaturization of attenuator. Recent research shows step attenuator based on RF MEMS switches meet well the state-of-the-art requirements of miniaturized reconfigurable attenuation devices with high precision and broadband performance. In this chapter, we introduce a compact 3-bit step attenuator based on RF MEMS switches with 0 ~ 70 dB attenuation at 10 dB intervals up to 20GHz. The on-chip attenuator consists of 12 ohmic MEMS switches, 3 π-type resistive attenuation networks, and microwave compensate structures. To optimize the attenuation characteristics within the broadband, theoretical analysis and 3D modelling were performed. The device was obtained using MEMS process combined with polysilicon integrated circuit (IC) process.
In section “Structure Design,” the structure of the step attenuator was proposed and three modules were designed independently including: (1) Resistive attenuation network. Two approaches are presented and discussed. (a) Polysilicon thin film resistor with symmetric topology is applied to realize the high-precision π-type resistive attenuation modules (10, 20, 40 dB). (b) Distributed TaN single thin film resistor (STFR) equivalent to π-type resistive network was designed with a more compact structure (2/3 compared to traditional network). It can realize 5 ~ 30 dB attenuation with less parasite effects. (2) RF MEMS switches. Toggling part is the determining factor to reduce the footprint of the entire attenuator. SP2T switch including 2 ohmic Au contact single-cantilever MEMS switches was customized for the attenuator. (3) CPW and microwave compensate structures. Precise design of the transmission path connecting each module is significant to suppress the inherent insertion loss and improve the matching performance. Right-angle bends and T-junctions were analyzed and designed. Based on the results of these three blocks, the overall attenuator was assembled and optimized with consideration of matching performance.
In section “Fabrication,” we describe the fabrication method of RF MEMS attenuators. The 3-bit attenuator was manufactured with surface micromachining process and polysilicon IC techniques on 4 inch wafers and features 11 lithography steps. Key processes are emphasized including high-precision resistance and excellent ohmic contact between polysilicon and Au CPW was realized with experimental research. The photosensitive PI was used as sacrificial layer and the patterning process was simplified. The CPW and upper electrodes of the switch which were manufactured by low stress Au electroplating process have small roughness and without evident buckling after the sacrificial layer released. Based on these process studies, the 3-bit attenuator is successfully fabricated.
In section “Characterization,” characterization of the obtained RF MEMS attenuator is presented. The measurement results show that the driven voltage of RF MEMS switch is 32 ~ 42 V and it can operate more than 3 × 108 times (cold switched mode). When toggling between the different transmission paths using MEMS switches, the 3-bit attenuator can realize target attenuation in range of 0 ~ 70 dB at 10 dB intervals up to 20 GHz. The accuracy and error of all the attenuation states is better than ±1.88 dB and 2.11 dB. The return loss of the 3-bit switched attenuator is better than 11.95 dB. Micromachined reconfigurable attenuator based on RF MEMS switch is demonstrated and can be further applied in particular microwave systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anna P et al (2012) Reliability enhancement by suitable actuation waveforms for capacitive RF MEMS switches in III-V technology. J Microelecromech Syst 21(2):414–419CrossRef Anna P et al (2012) Reliability enhancement by suitable actuation waveforms for capacitive RF MEMS switches in III-V technology. J Microelecromech Syst 21(2):414–419CrossRef
Zurück zum Zitat Avago datasheet of AMMC-6650 DC–40 GHz variable attenuator Avago datasheet of AMMC-6650 DC–40 GHz variable attenuator
Zurück zum Zitat Bae J et al (2017) A novel concurrent 22–29/57–64-GHz dual-band CMOS step attenuator with low phase variations. IEEE Trans Microw Theory Tech 64(6):1867–1875CrossRef Bae J et al (2017) A novel concurrent 22–29/57–64-GHz dual-band CMOS step attenuator with low phase variations. IEEE Trans Microw Theory Tech 64(6):1867–1875CrossRef
Zurück zum Zitat Bansal D et al (2017) Low voltage driven RF MEMS capacitive switch using reinforcement for reduced buckling. J Micromech Microeng 27(2):024001CrossRef Bansal D et al (2017) Low voltage driven RF MEMS capacitive switch using reinforcement for reduced buckling. J Micromech Microeng 27(2):024001CrossRef
Zurück zum Zitat Cano JL et al (2010) Ultra-wideband chip attenuator for precise noise measurements at cryogenic temperatures. IEEE Trans Microw Theory Tech 58(9):2504–2510CrossRef Cano JL et al (2010) Ultra-wideband chip attenuator for precise noise measurements at cryogenic temperatures. IEEE Trans Microw Theory Tech 58(9):2504–2510CrossRef
Zurück zum Zitat Chih-Hsiang K et al (2013) An electronically-scanned 1.8–2.1GHz base-station antenna using packaged high-reliability RF MEMS phase shifters. IEEE Trans Microw Theory Tech 61(2): 979–985CrossRef Chih-Hsiang K et al (2013) An electronically-scanned 1.8–2.1GHz base-station antenna using packaged high-reliability RF MEMS phase shifters. IEEE Trans Microw Theory Tech 61(2): 979–985CrossRef
Zurück zum Zitat David AC et al (2013) RF MEMS switches with RuO2–Au contacts cycled to 10 billion cycles. J Microelectromech Syst 22(3):655–661CrossRef David AC et al (2013) RF MEMS switches with RuO2–Au contacts cycled to 10 billion cycles. J Microelectromech Syst 22(3):655–661CrossRef
Zurück zum Zitat David M et al (2016) Dielectric charging characterization of Triboelectric effects in MEMS switches. J MEMS 25(4):737–743CrossRef David M et al (2016) Dielectric charging characterization of Triboelectric effects in MEMS switches. J MEMS 25(4):737–743CrossRef
Zurück zum Zitat Diego Correas S et al (2014) Graphene-based plasmonic tunable low-pass filters in the terahertz band. IEEE Trans Nanotechnol 13(6):1145–1153CrossRef Diego Correas S et al (2014) Graphene-based plasmonic tunable low-pass filters in the terahertz band. IEEE Trans Nanotechnol 13(6):1145–1153CrossRef
Zurück zum Zitat Hakan D et al (2008) Analysis and design of RF CMOS attenuators. IEEE J Solid-St Circ 43(10):2269–2283CrossRef Hakan D et al (2008) Analysis and design of RF CMOS attenuators. IEEE J Solid-St Circ 43(10):2269–2283CrossRef
Zurück zum Zitat Hiromi S et al (2004) Proposal and experimental study of a high-precision polycrystalline-silicon film resistor with a quasi-double-layer structure. Electron Comm Jpn 87(7):643–650 Hiromi S et al (2004) Proposal and experimental study of a high-precision polycrystalline-silicon film resistor with a quasi-double-layer structure. Electron Comm Jpn 87(7):643–650
Zurück zum Zitat Hyunchul E et al (2008) A 6-20GHz compact multi-bit digital attenuator using InP/InGaAs PIN Diodes IPRM 2008. In: 20th international conference on. Versailles, France. pp 1–8 Hyunchul E et al (2008) A 6-20GHz compact multi-bit digital attenuator using InP/InGaAs PIN Diodes IPRM 2008. In: 20th international conference on. Versailles, France. pp 1–8
Zurück zum Zitat Iannacci J et al (2009) General purpose reconfigurable MEMS-based attenuator for radio frequency and microwave applications. In: EUROCON ‘09. IEEE. St Petersburg, Russia. pp 1197–1205 Iannacci J et al (2009) General purpose reconfigurable MEMS-based attenuator for radio frequency and microwave applications. In: EUROCON ‘09. IEEE. St Petersburg, Russia. pp 1197–1205
Zurück zum Zitat Jiang HC et al (2010) Microwave power thin film resistors for high frequency and high power load applications. Appl Phys Let 97(17):173504CrossRef Jiang HC et al (2010) Microwave power thin film resistors for high frequency and high power load applications. Appl Phys Let 97(17):173504CrossRef
Zurück zum Zitat Jing W et al (2004) 1.156-GHz self-aligned vibrating micromechanical disk resonator. IEEE Trans Ultrason Ferroelectr Freq Control 51(12):1607CrossRef Jing W et al (2004) 1.156-GHz self-aligned vibrating micromechanical disk resonator. IEEE Trans Ultrason Ferroelectr Freq Control 51(12):1607CrossRef
Zurück zum Zitat Junfeng S et al (2016) A broadband DC to 20 GHz 3-bit MEMS digital attenuator. J Micromech Microeng 26(5):1–7 Junfeng S et al (2016) A broadband DC to 20 GHz 3-bit MEMS digital attenuator. J Micromech Microeng 26(5):1–7
Zurück zum Zitat Kim M et al (2001a) A DC-to-40GHz Four-Bit RF MEMS True-time delay network. IEEE Microw Wireless Compon Lett 11(2):56–58CrossRef Kim M et al (2001a) A DC-to-40GHz Four-Bit RF MEMS True-time delay network. IEEE Microw Wireless Compon Lett 11(2):56–58CrossRef
Zurück zum Zitat Kim M et al (2001b) A DC-to-40 GHz four-bit RF MEMS true-time delay network. IEEE Microw Wirel Co Lett 11(2):56–58CrossRef Kim M et al (2001b) A DC-to-40 GHz four-bit RF MEMS true-time delay network. IEEE Microw Wirel Co Lett 11(2):56–58CrossRef
Zurück zum Zitat Lee S et al (2004) Low-loss analog and digital reflection-type MEMS phase shifters with 1: 3 bandwidth. IEEE Trans Microw Theory Tech 52(1):211–219CrossRef Lee S et al (2004) Low-loss analog and digital reflection-type MEMS phase shifters with 1: 3 bandwidth. IEEE Trans Microw Theory Tech 52(1):211–219CrossRef
Zurück zum Zitat Ling L et al (2013) DC-contact radio-frequency microelectromechanical system symmetric toggle switch on a borofloat substrate. Micro Nano Lett 8(5):221–224CrossRef Ling L et al (2013) DC-contact radio-frequency microelectromechanical system symmetric toggle switch on a borofloat substrate. Micro Nano Lett 8(5):221–224CrossRef
Zurück zum Zitat Lucyszyn S (2010) Advanced RF MEMS. Cambrige University Press, New YorkCrossRef Lucyszyn S (2010) Advanced RF MEMS. Cambrige University Press, New YorkCrossRef
Zurück zum Zitat Malhaire C et al (2003) Design of a polysilicon-on-insulator pressure sensor with original polysilicon layout for harsh environment. Thin Solid Films 427:362–366CrossRef Malhaire C et al (2003) Design of a polysilicon-on-insulator pressure sensor with original polysilicon layout for harsh environment. Thin Solid Films 427:362–366CrossRef
Zurück zum Zitat Marcus GJ et al (2011) A Broadband High Dynamic Range Voltage Controlled Attenuator MMIC with IIP3 > +47dBm over Entire 30dB Analog Control Range. IEEE MTT-S Int Microw Symp Dig, Baltimore, MD, USA 1–4 Marcus GJ et al (2011) A Broadband High Dynamic Range Voltage Controlled Attenuator MMIC with IIP3 > +47dBm over Entire 30dB Analog Control Range. IEEE MTT-S Int Microw Symp Dig, Baltimore, MD, USA 1–4
Zurück zum Zitat Mingchun H (2010) Technology of phase-arrayed radar T/R modules. National Defence Industry Press, Beijing Mingchun H (2010) Technology of phase-arrayed radar T/R modules. National Defence Industry Press, Beijing
Zurück zum Zitat Ohzone T et al (1985) Ion-implanted Thin Polycrystalline-Silicon High-Value Resistors for High-Density Poly-Load Static RAM Applications. IEEE Trans Electron Devices 32(9):1749–1755CrossRef Ohzone T et al (1985) Ion-implanted Thin Polycrystalline-Silicon High-Value Resistors for High-Density Poly-Load Static RAM Applications. IEEE Trans Electron Devices 32(9):1749–1755CrossRef
Zurück zum Zitat Osseiran A et al (2014) Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun Mag 52(5):26–35CrossRef Osseiran A et al (2014) Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun Mag 52(5):26–35CrossRef
Zurück zum Zitat Petersen KE (1979) Micro-mechanical membrane switches on silicon. IBM J Res Dev 23(4): 376–385CrossRef Petersen KE (1979) Micro-mechanical membrane switches on silicon. IBM J Res Dev 23(4): 376–385CrossRef
Zurück zum Zitat Petersen KE (1982) Silicon as a mechanical material. Proc IEEE 70(5):420–457CrossRef Petersen KE (1982) Silicon as a mechanical material. Proc IEEE 70(5):420–457CrossRef
Zurück zum Zitat Rebeiz GM et al (2001) RF MEMS switches and switch circuits. IEEE Microw Mag 1, 2(4):59–71CrossRef Rebeiz GM et al (2001) RF MEMS switches and switch circuits. IEEE Microw Mag 1, 2(4):59–71CrossRef
Zurück zum Zitat Rebeiz GM et al (2003) Intermodulation distortion and power handling in RF MEMS switches, varactors, and tunable filters. IEEE Trans Microw Theory Tech 51(4):1247–1256CrossRef Rebeiz GM et al (2003) Intermodulation distortion and power handling in RF MEMS switches, varactors, and tunable filters. IEEE Trans Microw Theory Tech 51(4):1247–1256CrossRef
Zurück zum Zitat Rebeiz GM et al (2012) A high-reliability high-linearity high-power RF MEMS metal-contact switch for DC-40-GHz applications. IEEE Trans Microw Theory Tech 60(10):3096–3112MathSciNetCrossRef Rebeiz GM et al (2012) A high-reliability high-linearity high-power RF MEMS metal-contact switch for DC-40-GHz applications. IEEE Trans Microw Theory Tech 60(10):3096–3112MathSciNetCrossRef
Zurück zum Zitat Rebeiz GM et al (2015) Symmetric and compact single-pole multiple-throw (SP7T, SP11T) RF MEMS switches. J MEMS 24(3):685–695CrossRef Rebeiz GM et al (2015) Symmetric and compact single-pole multiple-throw (SP7T, SP11T) RF MEMS switches. J MEMS 24(3):685–695CrossRef
Zurück zum Zitat Sanghyo L et al (2004) Low-loss analog and digital reflection-type MEMS phase shifters with 1: 3 bandwidth. IEEE Trans Microw Theory Tech 52(1):211–219CrossRef Sanghyo L et al (2004) Low-loss analog and digital reflection-type MEMS phase shifters with 1: 3 bandwidth. IEEE Trans Microw Theory Tech 52(1):211–219CrossRef
Zurück zum Zitat Sekar V et al (2011) 1.2-1.6-GHz substrate-integrated-waveguide RF MEMS tunable filter. IEEE Trans Microw Theory Tech 59(4):866–876CrossRef Sekar V et al (2011) 1.2-1.6-GHz substrate-integrated-waveguide RF MEMS tunable filter. IEEE Trans Microw Theory Tech 59(4):866–876CrossRef
Zurück zum Zitat Simon O et al (2009) A distributed attenuator for K-band using standard SMD thin-film chip resistors. In: Microwave conference, Asia Pacific, pp 2148–2151 Simon O et al (2009) A distributed attenuator for K-band using standard SMD thin-film chip resistors. In: Microwave conference, Asia Pacific, pp 2148–2151
Zurück zum Zitat Stukach OV (2006) Variable attenuator with low phase shift. In: The 9th European conference on wireless technology. Manchester, UK. pp 241–244 Stukach OV (2006) Variable attenuator with low phase shift. In: The 9th European conference on wireless technology. Manchester, UK. pp 241–244
Zurück zum Zitat Sukomal D et al (2015) Reliability analysis of Ku-Band 5-bit phase shifters using MEMS SP4T and SPDT switches. IEEE Trans Microw Theory Tech 63(12):3997–4012CrossRef Sukomal D et al (2015) Reliability analysis of Ku-Band 5-bit phase shifters using MEMS SP4T and SPDT switches. IEEE Trans Microw Theory Tech 63(12):3997–4012CrossRef
Zurück zum Zitat Van Caekenberghe K (2009) RF MEMS technology for radar sensors. In: Radar conference – surveillance for a safer world. IEEE, pp 1–6 Van Caekenberghe K (2009) RF MEMS technology for radar sensors. In: Radar conference – surveillance for a safer world. IEEE, pp 1–6
Zurück zum Zitat Vikram S et al (2011) 1.2-1.6-GHz substrate-integrated-waveguide RF MEMS tunable filter. IEEE Trans Microw Theory Tech 59(4):866–876MathSciNetCrossRef Vikram S et al (2011) 1.2-1.6-GHz substrate-integrated-waveguide RF MEMS tunable filter. IEEE Trans Microw Theory Tech 59(4):866–876MathSciNetCrossRef
Zurück zum Zitat Weller TM et al (1998) Optimization of MM-wave distribution networks using silicon-based CPW. IEEE MTT-S Int Microw Symp Dig 2:537–540 Weller TM et al (1998) Optimization of MM-wave distribution networks using silicon-based CPW. IEEE MTT-S Int Microw Symp Dig 2:537–540
Zurück zum Zitat Weston PW et al (1997) EM-ANN modeling and optimal chamfering of 90 Deg CPW bends with air-bridges. In: IEEE MTT-S Digest. pp 1603–1606 Weston PW et al (1997) EM-ANN modeling and optimal chamfering of 90 Deg CPW bends with air-bridges. In: IEEE MTT-S Digest. pp 1603–1606
Zurück zum Zitat Xin G et al (2013) Study on polysilicon control with nanoscale grain size Nanotech. In: 13th IEEE conference on. Beijing, China. pp 950–953 Xin G et al (2013) Study on polysilicon control with nanoscale grain size Nanotech. In: 13th IEEE conference on. Beijing, China. pp 950–953
Zurück zum Zitat Xin G et al (2016) A miniaturized reconfigurable broadband attenuator based on RF MEMS switches. J Micromech Microeng 26:1–8 Xin G et al (2016) A miniaturized reconfigurable broadband attenuator based on RF MEMS switches. J Micromech Microeng 26:1–8
Zurück zum Zitat Yasir M et al (2017) Enhanced tunable microstrip attenuator based on few layer graphene flakes. IEEE Micro Wire Comp Lett 27(4):332CrossRef Yasir M et al (2017) Enhanced tunable microstrip attenuator based on few layer graphene flakes. IEEE Micro Wire Comp Lett 27(4):332CrossRef
Zurück zum Zitat Yeh J-H et al (2016) Microwave attenuators for use with quantum devices below 100 mK. J Appl Phys 121:224501CrossRef Yeh J-H et al (2016) Microwave attenuators for use with quantum devices below 100 mK. J Appl Phys 121:224501CrossRef
Zurück zum Zitat Yong-Sheng D et al (2007) A Novel UWB (0.045–50GHz) digital/analog compatible MMIC variable attenuator with low insertion phase shift and large dynamic range. IEEE Microw Wirel Co Lett 17(1):61–63CrossRef Yong-Sheng D et al (2007) A Novel UWB (0.045–50GHz) digital/analog compatible MMIC variable attenuator with low insertion phase shift and large dynamic range. IEEE Microw Wirel Co Lett 17(1):61–63CrossRef
Zurück zum Zitat Zavracky PM et al (1997) Micromechanical switches fabricated using nickel surface micromachining. J Microelectromech Syst 6(1):3–9CrossRef Zavracky PM et al (1997) Micromechanical switches fabricated using nickel surface micromachining. J Microelectromech Syst 6(1):3–9CrossRef
Zurück zum Zitat Zheng L et al (2016) A novel microwave attenuator on multilayered substrate integrated waveguide. IEEE Trans Compon Packag Manuf Technol 6(7):1106–1112CrossRef Zheng L et al (2016) A novel microwave attenuator on multilayered substrate integrated waveguide. IEEE Trans Compon Packag Manuf Technol 6(7):1106–1112CrossRef
Zurück zum Zitat Zhihao H et al (2009) Design and fabrication of DC to 30 GHz DC-contact shunt RF MEMS switch. Opt Precis Eng 17(8):1922–1927 Zhihao H et al (2009) Design and fabrication of DC to 30 GHz DC-contact shunt RF MEMS switch. Opt Precis Eng 17(8):1922–1927
Zurück zum Zitat Zhong Q, Liu Z (2016) Wideband attenuators using distributed resistors for attenuation up to 30 dB. IEICE Electron Exp 13(10):1–9CrossRef Zhong Q, Liu Z (2016) Wideband attenuators using distributed resistors for attenuation up to 30 dB. IEICE Electron Exp 13(10):1–9CrossRef
Metadaten
Titel
A Micromachined Reconfigurable Attenuator
verfasst von
Zewen Liu
Xin Guo
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5945-2_33

Neuer Inhalt