Skip to main content
Erschienen in: Mechanics of Composite Materials 1/2018

05.03.2018

A Micromechanical Method for the Analysis of Three-Dimensional Smart Composites

verfasst von: J. J. Ye, Ch. Ch. Chu, Y. K. Wang, B. Q. Shi, Z. Zhai, Y. Y. Qiu

Erschienen in: Mechanics of Composite Materials | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this paper is to develop a micromechanical method based on a proper representative volume element to investigate the effective coefficients and fully coupled electromagnetoelastic responses for three-dimensional smart composites. Relations between the particulate volume fraction, effective moduli, piezoelectric coefficients, and dielectric coefficients are investigated for the composites. Their effective responses, with account of electric, magnetic, and displacement fields, are analyzed. The numerical results obtained indicate that the overall strains of piezoelectric-piezomagnetic composites strongly depend on variations of the electric and magnetic fields.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Benveniste, “Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases,” Phys. Rev., 51, 16424-16427 (1995).CrossRef Y. Benveniste, “Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases,” Phys. Rev., 51, 16424-16427 (1995).CrossRef
2.
Zurück zum Zitat F. B. Feng, D. B. Futch, D. H. D. Hsu, and M. V. Manuel, “Effect of phase on debonds strength in shape memory alloy reinforced composites,” Mater. Des., 57, 98-102 (2014).CrossRef F. B. Feng, D. B. Futch, D. H. D. Hsu, and M. V. Manuel, “Effect of phase on debonds strength in shape memory alloy reinforced composites,” Mater. Des., 57, 98-102 (2014).CrossRef
3.
Zurück zum Zitat S. S. Gohari and Z. Vrcelj, “New explicit solution for static shape control of smart laminated cantilever piezo-composite-hybrid plates/beams under thermo-electro-mechanical loads using piezoelectric actuators,” Compos. Struct., 145, 89-112 (2016).CrossRef S. S. Gohari and Z. Vrcelj, “New explicit solution for static shape control of smart laminated cantilever piezo-composite-hybrid plates/beams under thermo-electro-mechanical loads using piezoelectric actuators,” Compos. Struct., 145, 89-112 (2016).CrossRef
4.
Zurück zum Zitat Z. K. Zhang and A. K. Soh, “Micromechanics predictions of the effective moduli of magneto electro elastic composite materials,” Eur. J. Mech. A-Solids, 24, 1054-1067 (2005).CrossRef Z. K. Zhang and A. K. Soh, “Micromechanics predictions of the effective moduli of magneto electro elastic composite materials,” Eur. J. Mech. A-Solids, 24, 1054-1067 (2005).CrossRef
5.
Zurück zum Zitat C. H. Lin and A. Muliana, “Micromechanics models for the effective nonlinear electro-mechanical responses of piezoelectric composites,” Acta Mech., 224, 1471-1492 (2013).CrossRef C. H. Lin and A. Muliana, “Micromechanics models for the effective nonlinear electro-mechanical responses of piezoelectric composites,” Acta Mech., 224, 1471-1492 (2013).CrossRef
6.
Zurück zum Zitat J. J. Ye, Y. Y. Qiu, X. F. Chen, Z. Zhai, C. L. Huang, and X. L. Zhang “Numerical investigations of microscopic characteristic influences on the mechanical properties of polymer-matrix composites,” Polym. Compos., 38, No. 7, 2734-2742 (2017).CrossRef J. J. Ye, Y. Y. Qiu, X. F. Chen, Z. Zhai, C. L. Huang, and X. L. Zhang “Numerical investigations of microscopic characteristic influences on the mechanical properties of polymer-matrix composites,” Polym. Compos., 38, No. 7, 2734-2742 (2017).CrossRef
7.
Zurück zum Zitat M. C. Ray, “Micromechanics of piezoelectric composites with improved effective piezoelectric constant,” Int. J. Mech. Mater. Des., 3, 361-371 (2006).CrossRef M. C. Ray, “Micromechanics of piezoelectric composites with improved effective piezoelectric constant,” Int. J. Mech. Mater. Des., 3, 361-371 (2006).CrossRef
8.
Zurück zum Zitat Y. M. Shabana and M. Ristinmaa, “Micromechanical modeling of smart composites considering debonding of reinforcements,” Int. J. Solids Struct., 48, 3209-3216 (2011).CrossRef Y. M. Shabana and M. Ristinmaa, “Micromechanical modeling of smart composites considering debonding of reinforcements,” Int. J. Solids Struct., 48, 3209-3216 (2011).CrossRef
9.
Zurück zum Zitat A. V. Georgiades, K. S. Challagulla, and A. L. Kalamkarov. “Modeling of the thermopiezoelastic behavior of prismatic smart composite structures made of orthotropic materials,” Compos. Part B-Eng., 37, 569-582 (2006).CrossRef A. V. Georgiades, K. S. Challagulla, and A. L. Kalamkarov. “Modeling of the thermopiezoelastic behavior of prismatic smart composite structures made of orthotropic materials,” Compos. Part B-Eng., 37, 569-582 (2006).CrossRef
10.
Zurück zum Zitat G. Sharifishourabi and R. Alebrahim. “Mechanical properties of potentially-smart carbon/epoxy composites with asymmetrically embedded shape memory wires,” Mater. Design., 59, 486-493 (2014).CrossRef G. Sharifishourabi and R. Alebrahim. “Mechanical properties of potentially-smart carbon/epoxy composites with asymmetrically embedded shape memory wires,” Mater. Design., 59, 486-493 (2014).CrossRef
11.
Zurück zum Zitat J. Sladek, V. Sladek, S. Krahulec, and C. Song, “Micromechanics determination of effective properties of voided magnetoelectroelastic materials,” Compos. Mater. Sci., 116, 103-112 (2016).CrossRef J. Sladek, V. Sladek, S. Krahulec, and C. Song, “Micromechanics determination of effective properties of voided magnetoelectroelastic materials,” Compos. Mater. Sci., 116, 103-112 (2016).CrossRef
12.
Zurück zum Zitat T. Tang and S. D. Felicelli. “Numerical characterization of effective fully coupled thermo- electro-magneto- viscoelasticplastic response of smart composites,” Int. J. NonLin. Mech., 71, 52-62 (2015).CrossRef T. Tang and S. D. Felicelli. “Numerical characterization of effective fully coupled thermo- electro-magneto- viscoelasticplastic response of smart composites,” Int. J. NonLin. Mech., 71, 52-62 (2015).CrossRef
13.
Zurück zum Zitat Y. Zhong and W. Qin, “Variational asymptotic homogenization of magneto-electro-elastic materials with coated fibers,” Compos. Struct., 133, 300-311 (2015).CrossRef Y. Zhong and W. Qin, “Variational asymptotic homogenization of magneto-electro-elastic materials with coated fibers,” Compos. Struct., 133, 300-311 (2015).CrossRef
14.
Zurück zum Zitat M. H. Malakooti and H. A. Sodano, “Multi-inclusion modeling of multiphase piezoelectric composites,” Compos. Part B-Eng., 47, 181-189 (2013).CrossRef M. H. Malakooti and H. A. Sodano, “Multi-inclusion modeling of multiphase piezoelectric composites,” Compos. Part B-Eng., 47, 181-189 (2013).CrossRef
15.
Zurück zum Zitat Z. Zhang and X. Wang, “Effective multi-field properties of electro-magneto-thermoelastic composites estimated by finite element method approach,” Acta Mech. Solida. Sini., 28, 145-155 (2015).CrossRef Z. Zhang and X. Wang, “Effective multi-field properties of electro-magneto-thermoelastic composites estimated by finite element method approach,” Acta Mech. Solida. Sini., 28, 145-155 (2015).CrossRef
16.
Zurück zum Zitat K. S. Challagulla and A. V. Georgiades. Micromechanical analysis of magneto-electro- thermo-elastic composite materials with applications to multilayered structures,” Int. J. Eng. Sci., 49, 85-104 (2011).CrossRef K. S. Challagulla and A. V. Georgiades. Micromechanical analysis of magneto-electro- thermo-elastic composite materials with applications to multilayered structures,” Int. J. Eng. Sci., 49, 85-104 (2011).CrossRef
17.
Zurück zum Zitat J. Lv, “A hierarchical multiscale approach for predicting thermo-electro-mechanical behavior of heterogeneous piezoelectric smart materials,” Compos. Mater. Sci., 87, 88-99 (2014).CrossRef J. Lv, “A hierarchical multiscale approach for predicting thermo-electro-mechanical behavior of heterogeneous piezoelectric smart materials,” Compos. Mater. Sci., 87, 88-99 (2014).CrossRef
18.
Zurück zum Zitat J. Aboudi, Mechanics of Composite Materials-A Unified Micromechanical Approach, Elsevier Science Publ. Ltd., London, (1991). J. Aboudi, Mechanics of Composite Materials-A Unified Micromechanical Approach, Elsevier Science Publ. Ltd., London, (1991).
19.
Zurück zum Zitat H. Li and B. Zhang, “A new viscoelastic model based on generalized method of cells for fiber-reinforced composites,” Int. J. Plasticity, 65, 22-32 (2015).CrossRef H. Li and B. Zhang, “A new viscoelastic model based on generalized method of cells for fiber-reinforced composites,” Int. J. Plasticity, 65, 22-32 (2015).CrossRef
20.
Zurück zum Zitat J. J. Ye, Y. Y. Qiu, X. F. Chen, and J. Ma, “Initial and final failure strength analysis of composites based on a micromechanical method,” Compos. Struct., 125, 328-335 (2015);.CrossRef J. J. Ye, Y. Y. Qiu, X. F. Chen, and J. Ma, “Initial and final failure strength analysis of composites based on a micromechanical method,” Compos. Struct., 125, 328-335 (2015);.CrossRef
21.
Zurück zum Zitat B. A. Bednarcy and P. W. Yarrington, “Collier Research Corporation, Hampton, Virginia Coupled Thermo-Electro-Magneto-Elastic Respose of Smart Stiffened Panels,” NASA Contractor Report CR-2009-215269 (2009). B. A. Bednarcy and P. W. Yarrington, “Collier Research Corporation, Hampton, Virginia Coupled Thermo-Electro-Magneto-Elastic Respose of Smart Stiffened Panels,” NASA Contractor Report CR-2009-215269 (2009).
22.
Zurück zum Zitat J. Aboudi, M. J. Pindera, and S. M.Arnold, “High-fidelity generalized method of cells for inelastic periodic multiphase materials,” NASA Contractor Report TM-2002-211469 (2002). J. Aboudi, M. J. Pindera, and S. M.Arnold, “High-fidelity generalized method of cells for inelastic periodic multiphase materials,” NASA Contractor Report TM-2002-211469 (2002).
23.
Zurück zum Zitat J. Aboudi, “Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites,” Smart Mater. Struct., 10, 867-877 (2001).CrossRef J. Aboudi, “Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites,” Smart Mater. Struct., 10, 867-877 (2001).CrossRef
24.
Zurück zum Zitat K. Jin and J. Aboudi, “Macroscopic behavior prediction of multiferroic composites,” Int. J. Eng. Sci., 94, 226-241 (2015).CrossRef K. Jin and J. Aboudi, “Macroscopic behavior prediction of multiferroic composites,” Int. J. Eng. Sci., 94, 226-241 (2015).CrossRef
25.
Zurück zum Zitat J. Aboudi, “Micromechanical prediction of the effective behavior of fully coupled electro-magneto-thermo-elasti multiphase composites,” NASA Contractor Report CR-2000-209787 (2000). J. Aboudi, “Micromechanical prediction of the effective behavior of fully coupled electro-magneto-thermo-elasti multiphase composites,” NASA Contractor Report CR-2000-209787 (2000).
26.
Zurück zum Zitat J. Aboudi Micromechanical Analyses of Smart Composite Materials, New York: Nova Science Publ.; 2007. J. Aboudi Micromechanical Analyses of Smart Composite Materials, New York: Nova Science Publ.; 2007.
27.
Zurück zum Zitat Q. Chen, X. F. Chen, Z. Zhai, and Z. B. Yang, “A new and general formulation of three-dimensional finite-volume micromechanics for particulate reinforced composites with viscoplastic phases,” Compos. Part B-Eng., 85, 216-232, 2016.CrossRef Q. Chen, X. F. Chen, Z. Zhai, and Z. B. Yang, “A new and general formulation of three-dimensional finite-volume micromechanics for particulate reinforced composites with viscoplastic phases,” Compos. Part B-Eng., 85, 216-232, 2016.CrossRef
28.
Zurück zum Zitat Y. Y. Qiu, Y. M. He, J. Ma, X. L. Zhang, and C.L. Huang, “Studying the nonlinear properties and strain-rate sensitivity of SiC short fiber-reinforced Al matrix composites,” Sci. Eng. Compos. Mater., 2015. Y. Y. Qiu, Y. M. He, J. Ma, X. L. Zhang, and C.L. Huang, “Studying the nonlinear properties and strain-rate sensitivity of SiC short fiber-reinforced Al matrix composites,” Sci. Eng. Compos. Mater., 2015.
29.
Zurück zum Zitat T. Tang and W. Yu, “Micromechanical modeling of multiphysical behaviors of smart materials using variational asymptotic method,” Smart Mater. Sturct., 18, 125026-125040 (2009).CrossRef T. Tang and W. Yu, “Micromechanical modeling of multiphysical behaviors of smart materials using variational asymptotic method,” Smart Mater. Sturct., 18, 125026-125040 (2009).CrossRef
Metadaten
Titel
A Micromechanical Method for the Analysis of Three-Dimensional Smart Composites
verfasst von
J. J. Ye
Ch. Ch. Chu
Y. K. Wang
B. Q. Shi
Z. Zhai
Y. Y. Qiu
Publikationsdatum
05.03.2018
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 1/2018
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-018-9714-z

Weitere Artikel der Ausgabe 1/2018

Mechanics of Composite Materials 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.