Skip to main content

2018 | OriginalPaper | Buchkapitel

A Microwave Power Sensor

verfasst von : Zhiqiang Zhang, Xiaoping Liao

Erschienen in: Micro Electro Mechanical Systems

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter mainly introduces microwave power sensors based on the microelectromechanical system (MEMS) technology, in order to achieve the power detection, gain control, and circuit protection. In RF and microwave frequencies, the MEMS power sensors have the advantages of miniaturization, low power, high sensitivity, and compatible with GaAs monolithic microwave integrated circuits (MMIC), etc. In structure, several kinds of the power sensors are described according to different application requirements. They utilize the form of coplanar waveguide transmission lines, with small structural dimensions (generally <1 mm2). In theory, they adopt conversion principles of microwave power-heat-electricity or microwave power-force-electricity. In fabrication, they are accomplished with the GaAs MMIC process. In measurement, experiments demonstrate the validity of the proposed design and model. These sensors meet the characteristics of high performance and low cost. They can be used as implant devices and embedded in microwave communication and radar systems, such as the self-detection of the transceiver module and the measurement of leakage power in microwave module circuits. The MEMS microwave power sensors can directly measure the power of below 500 mW. For a higher microwave power measurement, it is usually necessary to couple or extract a portion of the microwave power by some structures. These MEMS power sensors have the ability to extend the frequency and phase measurements of microwave signals, constituting frequency and phase detectors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Barker NS, Rebeiz GM (1998) Distributed MEMS true-time delay phase shifters and wide-band switches. IEEE Trans Microw Theory Tech 46(11):1881–1890CrossRef Barker NS, Rebeiz GM (1998) Distributed MEMS true-time delay phase shifters and wide-band switches. IEEE Trans Microw Theory Tech 46(11):1881–1890CrossRef
Zurück zum Zitat Brush AS (2007) Measurement of microwave power. IEEE Instrum Meas Mag 10(2):20–25CrossRef Brush AS (2007) Measurement of microwave power. IEEE Instrum Meas Mag 10(2):20–25CrossRef
Zurück zum Zitat Cui Y, Liao X (2012) Modeling and design of a capacitive microwave power sensor for X-band applications based on GaAs technology. J Micromech Microeng 22(5):055013. (10pp)CrossRef Cui Y, Liao X (2012) Modeling and design of a capacitive microwave power sensor for X-band applications based on GaAs technology. J Micromech Microeng 22(5):055013. (10pp)CrossRef
Zurück zum Zitat Daullé A, Xavier P, Rauly D (2001) A power sensor for fast measurement of telecommunications signals using substitution method. IEEE Trans Instrum Meas 50(5):1190–1196CrossRef Daullé A, Xavier P, Rauly D (2001) A power sensor for fast measurement of telecommunications signals using substitution method. IEEE Trans Instrum Meas 50(5):1190–1196CrossRef
Zurück zum Zitat Dehe A, Krozer V, Fricke K, Klingbeil H, Beilenhoff K, Hartnagel HL (1995) Integrated microwave power sensor. Electron Lett 31(25):2187–2188CrossRef Dehe A, Krozer V, Fricke K, Klingbeil H, Beilenhoff K, Hartnagel HL (1995) Integrated microwave power sensor. Electron Lett 31(25):2187–2188CrossRef
Zurück zum Zitat Dehé A, Krozer V, Chen B, Hartnagel HL (1996) High-sensitivity microwave power sensor for GaAs-MMIC implementation. Electron Lett 32(23):2149–2150CrossRef Dehé A, Krozer V, Chen B, Hartnagel HL (1996) High-sensitivity microwave power sensor for GaAs-MMIC implementation. Electron Lett 32(23):2149–2150CrossRef
Zurück zum Zitat Dehé A, Fricke-Neuderth K, Krozer V (2002) Broadband thermoelectric microwave power sensors using GaAs foundry process. IEEE MTT-S international microwave symposium digest. Institute of Electrical and Electronics Engineers Inc., Seattle, pp 1829–1832 Dehé A, Fricke-Neuderth K, Krozer V (2002) Broadband thermoelectric microwave power sensors using GaAs foundry process. IEEE MTT-S international microwave symposium digest. Institute of Electrical and Electronics Engineers Inc., Seattle, pp 1829–1832
Zurück zum Zitat Fernández LJ, Visser E, Sesé J, Wiegerink R, Flokstra J, Jansen H, Elwenspoek M (2003) Radio frequency power sensor based on MEMS technology. Proceedings of IEEE Sensors. Institute of Electrical and Electronics Engineers Inc., Toronto, pp 549–552 Fernández LJ, Visser E, Sesé J, Wiegerink R, Flokstra J, Jansen H, Elwenspoek M (2003) Radio frequency power sensor based on MEMS technology. Proceedings of IEEE Sensors. Institute of Electrical and Electronics Engineers Inc., Toronto, pp 549–552
Zurück zum Zitat Fernández LJ, Sesé J, Wiegerink R, Flokstra J, Jansen H, Elwenspoek M (2005) Radio frequency power sensor based on MEMS technology with ultra low losses. Proceedings of IEEE International Conference on Micro Electro Mechanical Systems. Institute of Electrical and Electronics Engineers Inc., Miami Beach, pp 191–194 Fernández LJ, Sesé J, Wiegerink R, Flokstra J, Jansen H, Elwenspoek M (2005) Radio frequency power sensor based on MEMS technology with ultra low losses. Proceedings of IEEE International Conference on Micro Electro Mechanical Systems. Institute of Electrical and Electronics Engineers Inc., Miami Beach, pp 191–194
Zurück zum Zitat Fernández LJ, Wiegerink RJ, Flokstra J, Sesé J, Jansen HV, Elwenspoek M (2006) A capacitive RF power sensor based on MEMS technology. J Micromech Microeng 16(7):1099–1107CrossRef Fernández LJ, Wiegerink RJ, Flokstra J, Sesé J, Jansen HV, Elwenspoek M (2006) A capacitive RF power sensor based on MEMS technology. J Micromech Microeng 16(7):1099–1107CrossRef
Zurück zum Zitat Han J, Liao X (2014) A 0.1-40 GHz broadband MEMS clamped-clamped beam capacitive power sensor based on GaAs technology. J Micromech Microeng 24(6):065024. (7pp)CrossRef Han J, Liao X (2014) A 0.1-40 GHz broadband MEMS clamped-clamped beam capacitive power sensor based on GaAs technology. J Micromech Microeng 24(6):065024. (7pp)CrossRef
Zurück zum Zitat Han J, Liao X (2015) Third-order intermodulation of an MEMS clamped-clamped beam capacitive power sensor based on GaAs technology. IEEE Sensors J 15(7):3645–3646CrossRef Han J, Liao X (2015) Third-order intermodulation of an MEMS clamped-clamped beam capacitive power sensor based on GaAs technology. IEEE Sensors J 15(7):3645–3646CrossRef
Zurück zum Zitat Han J, Liao X (2016a) Analytical and electrical modeling of a MEMS thermoelectric microwave power sensor. J Micromech Microeng 26(9):094001. (7pp)CrossRef Han J, Liao X (2016a) Analytical and electrical modeling of a MEMS thermoelectric microwave power sensor. J Micromech Microeng 26(9):094001. (7pp)CrossRef
Zurück zum Zitat Han J, Liao X (2016b) A compact broadband microwave phase detector based on MEMS technology. IEEE Sensors J 16(10):3480–3481CrossRef Han J, Liao X (2016b) A compact broadband microwave phase detector based on MEMS technology. IEEE Sensors J 16(10):3480–3481CrossRef
Zurück zum Zitat Han L, Huang Q-A, Liao X-P (2007) A microwave power sensor based on GaAs MMIC technology. J Micromech Microeng 17(10):2132–2137CrossRef Han L, Huang Q-A, Liao X-P (2007) A microwave power sensor based on GaAs MMIC technology. J Micromech Microeng 17(10):2132–2137CrossRef
Zurück zum Zitat Han L, Huang Q-A, Liao X-P, Su S (2009) A micromachined inline-type wideband microwave power sensor based on GaAs MMIC technology. J Microelectromech Syst 18(3):705–714CrossRef Han L, Huang Q-A, Liao X-P, Su S (2009) A micromachined inline-type wideband microwave power sensor based on GaAs MMIC technology. J Microelectromech Syst 18(3):705–714CrossRef
Zurück zum Zitat Hua D, Liao X, Zhang J, Jiao Y (2009) MEMS frequency detector at X-band based on MMIC technology. TRANSDUCERS – International Conference on Solid-State Sensors, Actuators and Microsystems. IEEE Computer Society, Denver, pp 1405–1408 Hua D, Liao X, Zhang J, Jiao Y (2009) MEMS frequency detector at X-band based on MMIC technology. TRANSDUCERS – International Conference on Solid-State Sensors, Actuators and Microsystems. IEEE Computer Society, Denver, pp 1405–1408
Zurück zum Zitat Hua D, Liao X-p, Jiao J-c (2011) X-band microwave phase detector manufactured using GaAs micromachining technologies. J Micromech Microeng 21(3):035019. (7pp)CrossRef Hua D, Liao X-p, Jiao J-c (2011) X-band microwave phase detector manufactured using GaAs micromachining technologies. J Micromech Microeng 21(3):035019. (7pp)CrossRef
Zurück zum Zitat Hua D, Liao X-p, Liu H-c (2013) A micro compact coplanar power divider at X-band with finite-width ground plane based on GaAs MMIC technology. Microsyst Technol 19(12):1973–1980CrossRef Hua D, Liao X-p, Liu H-c (2013) A micro compact coplanar power divider at X-band with finite-width ground plane based on GaAs MMIC technology. Microsyst Technol 19(12):1973–1980CrossRef
Zurück zum Zitat Jackson WH (1974) A thin-film/semiconductor thermocouple for microwave power measurement. Hewlett-Packard J 26(1):16–18 Jackson WH (1974) A thin-film/semiconductor thermocouple for microwave power measurement. Hewlett-Packard J 26(1):16–18
Zurück zum Zitat V. Milanovic, M. Gaitan, M. E. Zaghloul: Micromachined thermocouple microwave detector in CMOS technology, Midwest Symp. Circuits Syst. (IEEE, Piscataway, NJ, United States, Ames 1996), pp. 273–276 V. Milanovic, M. Gaitan, M. E. Zaghloul: Micromachined thermocouple microwave detector in CMOS technology, Midwest Symp. Circuits Syst. (IEEE, Piscataway, NJ, United States, Ames 1996), pp. 273–276
Zurück zum Zitat Milanovic V, Gaitan M, Bowen ED, Tea NH, Zaghloul ME (1997) Thermoelectric power sensor for microwave applications by commercial CMOS fabrication. IEEE Electron Device Lett. 18(9):450–452CrossRef Milanovic V, Gaitan M, Bowen ED, Tea NH, Zaghloul ME (1997) Thermoelectric power sensor for microwave applications by commercial CMOS fabrication. IEEE Electron Device Lett. 18(9):450–452CrossRef
Zurück zum Zitat Milanovic V, Gaitan M, Zaghloul ME (1998) Micromachined thermocouple microwave detector by commercial CMOS fabrication. IEEE Trans Microw Theory Tech 46(5):550–553CrossRef Milanovic V, Gaitan M, Zaghloul ME (1998) Micromachined thermocouple microwave detector by commercial CMOS fabrication. IEEE Trans Microw Theory Tech 46(5):550–553CrossRef
Zurück zum Zitat Muldavin JB, Rebeiz GM (2000) High-isolation CPW MEMS shunt switches-Part1: modeling. IEEE Trans. Microw. Theory Tech. 48(6):1045–1052CrossRef Muldavin JB, Rebeiz GM (2000) High-isolation CPW MEMS shunt switches-Part1: modeling. IEEE Trans. Microw. Theory Tech. 48(6):1045–1052CrossRef
Zurück zum Zitat Rebeiz GM (2003) RF MEMS Theory, Design, and Technology. Wiley, Hoboken Rebeiz GM (2003) RF MEMS Theory, Design, and Technology. Wiley, Hoboken
Zurück zum Zitat Ulm M, Walter T, Mueller-Fiedler R, Voigtlaender K, Kasper E (2000) K-band capacitive MEMS-switches. opical Meeting on Silicon Monolithic Integrated Circuits in RF Systems. Institute of Electrical and Electronics Engineers Inc., Garmisch, pp 119–122 Ulm M, Walter T, Mueller-Fiedler R, Voigtlaender K, Kasper E (2000) K-band capacitive MEMS-switches. opical Meeting on Silicon Monolithic Integrated Circuits in RF Systems. Institute of Electrical and Electronics Engineers Inc., Garmisch, pp 119–122
Zurück zum Zitat Wang D-b, Liao X-p (2009) A novel symmetrical microwave power sensor based on GaAs monolithic microwave integrated circuit technology. J Micromech Microeng 19(7):125012. (8pp)CrossRef Wang D-b, Liao X-p (2009) A novel symmetrical microwave power sensor based on GaAs monolithic microwave integrated circuit technology. J Micromech Microeng 19(7):125012. (8pp)CrossRef
Zurück zum Zitat Wang D-b, Liao X-p (2010) A terminating-type MEMS microwave power sensor and its amplification system. J Micromech Microeng 20(7):075021. (8pp)CrossRef Wang D-b, Liao X-p (2010) A terminating-type MEMS microwave power sensor and its amplification system. J Micromech Microeng 20(7):075021. (8pp)CrossRef
Zurück zum Zitat Wang DB, Liao XP (2012a) Package solution of indirectly-heated type thermoelectric power sensors for RF application. Electron Lett 48(2):102–103CrossRef Wang DB, Liao XP (2012a) Package solution of indirectly-heated type thermoelectric power sensors for RF application. Electron Lett 48(2):102–103CrossRef
Zurück zum Zitat Wang D-b, Liao X-p (2012b) A novel MEMS double-channel microwave power sensor based on GaAs MMIC technology. Sens. Actuators A Phys. 188:95–102CrossRef Wang D-b, Liao X-p (2012b) A novel MEMS double-channel microwave power sensor based on GaAs MMIC technology. Sens. Actuators A Phys. 188:95–102CrossRef
Zurück zum Zitat Wang D-b, Liao X-p (2012c) A 35 GHz wireless millimeter-wave power sensor based on GaAs micromachining technology. J Micromech Microeng 22(6):065025. (8pp)CrossRef Wang D-b, Liao X-p (2012c) A 35 GHz wireless millimeter-wave power sensor based on GaAs micromachining technology. J Micromech Microeng 22(6):065025. (8pp)CrossRef
Zurück zum Zitat Wang DB, Liao XP, Liu T (2012a) Optimization of indirectly-heated type microwave power sensors based on GaAs micromachining. IEEE Sensors J 12(5):1349–1355CrossRef Wang DB, Liao XP, Liu T (2012a) Optimization of indirectly-heated type microwave power sensors based on GaAs micromachining. IEEE Sensors J 12(5):1349–1355CrossRef
Zurück zum Zitat Wang D-B, Liao X-P, Liu T (2012b) A thermoelectric power sensor and its package based on MEMS technology. J Microelectromech Syst 21(1):121–131CrossRef Wang D-B, Liao X-P, Liu T (2012b) A thermoelectric power sensor and its package based on MEMS technology. J Microelectromech Syst 21(1):121–131CrossRef
Zurück zum Zitat Wang DB, Liao XP, Liu T (2012c) A novel thermoelectric and capacitive power sensor with improved dynamic range based on GaAs MMIC technology. IEEE Electron Device Lett 33(2):269–271CrossRef Wang DB, Liao XP, Liu T (2012c) A novel thermoelectric and capacitive power sensor with improved dynamic range based on GaAs MMIC technology. IEEE Electron Device Lett 33(2):269–271CrossRef
Zurück zum Zitat Yan H, Liao X (2015) The high power up to 1 W characteristics of the capacitive microwave power sensor with grounded MEMS beam. IEEE Sensors J 15(12):6765–6766CrossRef Yan H, Liao X (2015) The high power up to 1 W characteristics of the capacitive microwave power sensor with grounded MEMS beam. IEEE Sensors J 15(12):6765–6766CrossRef
Zurück zum Zitat Yan J, Liao X (2016a) Equivalent lumped circuit model and S-parameter of indirect-heating thermoelectric power sensor. Sens. Actuators A Phys. 240:110–117CrossRef Yan J, Liao X (2016a) Equivalent lumped circuit model and S-parameter of indirect-heating thermoelectric power sensor. Sens. Actuators A Phys. 240:110–117CrossRef
Zurück zum Zitat Yan J, Liao X (2016b) Research on the response time of indirect-heating microwave power sensor. IEEE Sensors J 16(13):5270–5276CrossRef Yan J, Liao X (2016b) Research on the response time of indirect-heating microwave power sensor. IEEE Sensors J 16(13):5270–5276CrossRef
Zurück zum Zitat Yan H, Liao X, Hua D (2016) An X-band dual channel microwave phase detector based on GaAs MMIC technology. IEEE Sensors J 16(17):6515–6516CrossRef Yan H, Liao X, Hua D (2016) An X-band dual channel microwave phase detector based on GaAs MMIC technology. IEEE Sensors J 16(17):6515–6516CrossRef
Zurück zum Zitat Yi Z, Liao X (2012) An 8-12 GHz microwave frequency detector based on MEMS power sensors. J Micromech Microeng 22(3):035005. (8pp)CrossRef Yi Z, Liao X (2012) An 8-12 GHz microwave frequency detector based on MEMS power sensors. J Micromech Microeng 22(3):035005. (8pp)CrossRef
Zurück zum Zitat Yi Z, Liao X (2013) A capacitive power sensor based on the MEMS cantilever beam fabricated by GaAs MMIC technology. J Micromech Microeng 23(3):035001. (10pp)CrossRef Yi Z, Liao X (2013) A capacitive power sensor based on the MEMS cantilever beam fabricated by GaAs MMIC technology. J Micromech Microeng 23(3):035001. (10pp)CrossRef
Zurück zum Zitat Yi Z, Liao X (2014) Measurements on intermodulation distortion of capacitive power sensor based on MEMS cantilever beam. IEEE Sensors J 14(3):621–622CrossRef Yi Z, Liao X (2014) Measurements on intermodulation distortion of capacitive power sensor based on MEMS cantilever beam. IEEE Sensors J 14(3):621–622CrossRef
Zurück zum Zitat Yi Z, Liao X (2016a) A 3D model of the thermoelectric microwave power sensor by MEMS technology. Sensors 16(6):921MathSciNetCrossRef Yi Z, Liao X (2016a) A 3D model of the thermoelectric microwave power sensor by MEMS technology. Sensors 16(6):921MathSciNetCrossRef
Zurück zum Zitat Yi Z, Liao X (2016b) A cascaded terminating-type and capacitive-type power sensor for −10-to 22-dBm application. IEEE Electron Device Lett 37(4):489–491CrossRef Yi Z, Liao X (2016b) A cascaded terminating-type and capacitive-type power sensor for −10-to 22-dBm application. IEEE Electron Device Lett 37(4):489–491CrossRef
Zurück zum Zitat Yi Z, Liao X, Wu H (2013) Modeling of the terminating-type power sensors fabricated by GaAs MMIC process. J Micromech Microeng 23(8):085003. (9pp)CrossRef Yi Z, Liao X, Wu H (2013) Modeling of the terminating-type power sensors fabricated by GaAs MMIC process. J Micromech Microeng 23(8):085003. (9pp)CrossRef
Zurück zum Zitat Yi Z, Yan H, Yan J, Liao X (2016) Fabrication of the differential microwave power sensor by seesaw-type MEMS membrane. J Microelectromech Syst 25(4):582–584CrossRef Yi Z, Yan H, Yan J, Liao X (2016) Fabrication of the differential microwave power sensor by seesaw-type MEMS membrane. J Microelectromech Syst 25(4):582–584CrossRef
Zurück zum Zitat Yue CP, Wong SS (2000) Physical modeling of spiral inductors on silicon. IEEE Trans Electron Devices 47(3):560–568CrossRef Yue CP, Wong SS (2000) Physical modeling of spiral inductors on silicon. IEEE Trans Electron Devices 47(3):560–568CrossRef
Zurück zum Zitat Zhang Z, Liao X (2011) Packaging-test-fixture for in-line coupling RF MEMS power sensors. J Microelectromech Syst 20(3):1231–1233CrossRef Zhang Z, Liao X (2011) Packaging-test-fixture for in-line coupling RF MEMS power sensors. J Microelectromech Syst 20(3):1231–1233CrossRef
Zurück zum Zitat Zhang Z, Liao X (2012a) A three-channel thermoelectric RF MEMS power sensor for GaAs MMIC applications. Sens Actuators A Phys 182:68–71CrossRef Zhang Z, Liao X (2012a) A three-channel thermoelectric RF MEMS power sensor for GaAs MMIC applications. Sens Actuators A Phys 182:68–71CrossRef
Zurück zum Zitat Zhang Z, Liao X (2012b) A thermocouple-based self-heating RF power sensor with GaAs MMIC-compatible micromachining technology. IEEE Electron Device Lett 33(4):606–608CrossRef Zhang Z, Liao X (2012b) A thermocouple-based self-heating RF power sensor with GaAs MMIC-compatible micromachining technology. IEEE Electron Device Lett 33(4):606–608CrossRef
Zurück zum Zitat Zhang Z, Liao X (2012c) GaAs MMIC fabrication for the RF MEMS power sensor with both detection and non-detection states. Sens Actuators A Phys 188:29–34CrossRef Zhang Z, Liao X (2012c) GaAs MMIC fabrication for the RF MEMS power sensor with both detection and non-detection states. Sens Actuators A Phys 188:29–34CrossRef
Zurück zum Zitat Zhang Z, Liao X (2013a) A lumped model with phase analysis for inline RF MEMS power sensor applications. Sens Actuators A Phys 194:204–211CrossRef Zhang Z, Liao X (2013a) A lumped model with phase analysis for inline RF MEMS power sensor applications. Sens Actuators A Phys 194:204–211CrossRef
Zurück zum Zitat Zhang Z, Liao X (2013b) Characterization of packaged inline-type radio frequency microelectromechanical systems power sensors. Sens Actuators A Phys 201:294–301CrossRef Zhang Z, Liao X (2013b) Characterization of packaged inline-type radio frequency microelectromechanical systems power sensors. Sens Actuators A Phys 201:294–301CrossRef
Zurück zum Zitat Zhang Z, Liao X (2014) Inline capacitive RF power sensor based on floating MEMS beam for GaAs MMIC applications. Electron Lett 50(18):1292–1294CrossRef Zhang Z, Liao X (2014) Inline capacitive RF power sensor based on floating MEMS beam for GaAs MMIC applications. Electron Lett 50(18):1292–1294CrossRef
Zurück zum Zitat Zhang Z, Liao X (2015a) Suspended thermopile for microwave power sensors based on bulk MEMS and GaAs MMIC technology. IEEE Sensors J 15(4):2019–2020CrossRef Zhang Z, Liao X (2015a) Suspended thermopile for microwave power sensors based on bulk MEMS and GaAs MMIC technology. IEEE Sensors J 15(4):2019–2020CrossRef
Zurück zum Zitat Zhang Z, Liao X (2015b) An inline RF power sensor based on fixed capacitive coupling for GaAs MMIC applications. IEEE Sensors J 15(2):665–666CrossRef Zhang Z, Liao X (2015b) An inline RF power sensor based on fixed capacitive coupling for GaAs MMIC applications. IEEE Sensors J 15(2):665–666CrossRef
Zurück zum Zitat Zhang Z, Liao X (2015c) A directional inline-type millimeter-wave MEMS power sensor for GaAs MMIC applications. J Microelectromech Syst 24(2):253–255CrossRef Zhang Z, Liao X (2015c) A directional inline-type millimeter-wave MEMS power sensor for GaAs MMIC applications. J Microelectromech Syst 24(2):253–255CrossRef
Zurück zum Zitat Zhang Z, Liao X (2015d) An insertion thermoelectric RF MEMS power sensor for GaAs MMIC-compatible applications. IEEE Microwave Compon Lett 25(4):265–267CrossRef Zhang Z, Liao X (2015d) An insertion thermoelectric RF MEMS power sensor for GaAs MMIC-compatible applications. IEEE Microwave Compon Lett 25(4):265–267CrossRef
Zurück zum Zitat Zhang Z, Liao X, Han L (2010) A coupling RF MEMS power sensor based on GaAs MMIC technology. Sens Actuators A Phys 160(1–2):42–47CrossRef Zhang Z, Liao X, Han L (2010) A coupling RF MEMS power sensor based on GaAs MMIC technology. Sens Actuators A Phys 160(1–2):42–47CrossRef
Zurück zum Zitat Zhang Z, Liao X, Han L, Cheng Y (2011) A GaAs MMIC-based coupling RF MEMS power sensor with both detection and non-detection states. Sens Actuators A Phys 168(1):30–38CrossRef Zhang Z, Liao X, Han L, Cheng Y (2011) A GaAs MMIC-based coupling RF MEMS power sensor with both detection and non-detection states. Sens Actuators A Phys 168(1):30–38CrossRef
Zurück zum Zitat Zhang Z, Liao X, Wang X (2015) Research on thermocouple distribution for microwave power sensors based on GaAs MMIC process. IEEE Sensors J 15(8):4178–4179CrossRef Zhang Z, Liao X, Wang X (2015) Research on thermocouple distribution for microwave power sensors based on GaAs MMIC process. IEEE Sensors J 15(8):4178–4179CrossRef
Zurück zum Zitat Zhang Z, Guo Y, Li F, Gong Y, Liao X (2016) A sandwich-type thermoelectric microwave power sensor for GaAs MMIC-compatible applications. IEEE Electron Device Lett 37(12):1639–1641CrossRef Zhang Z, Guo Y, Li F, Gong Y, Liao X (2016) A sandwich-type thermoelectric microwave power sensor for GaAs MMIC-compatible applications. IEEE Electron Device Lett 37(12):1639–1641CrossRef
Zurück zum Zitat Zheng W-B, Huang Q-A, Liao X-P, Li F-X (2005) RF MEMS membrane switches on GaAs substrates for X-band applications. J Microelectromech Syst 14(3):464–471CrossRef Zheng W-B, Huang Q-A, Liao X-P, Li F-X (2005) RF MEMS membrane switches on GaAs substrates for X-band applications. J Microelectromech Syst 14(3):464–471CrossRef
Metadaten
Titel
A Microwave Power Sensor
verfasst von
Zhiqiang Zhang
Xiaoping Liao
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5945-2_32

Neuer Inhalt