Skip to main content
Erschienen in: Wireless Personal Communications 2/2015

01.09.2015

A Miniaturization Approach Towards 40 GHz Integrated Single Chip Receiver System for MMW Communication Networks

verfasst von: Sandeep Kumar, Binod Kumar Kanaujia, Santanu Dwari, Ganga Prasad Pandey, Dinesh Kumar Singh

Erschienen in: Wireless Personal Communications | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A full integration of single chip receiver system is remains to be a challenge in the area of millimetre wave (MMW) applications. In this paper, the integration of antenna, filter and CMOS low noise amplifier (LNA) is proposed which provides a new tri-design receiver system for MMW communication networks. A three-stage CMOS LNA is designed and integrated with co-design of filter and rectangular microstrip antenna which relaxes 50 Ω impedance matching constraint for designing at 40 GHz. Moreover, the new tri-design technique heavily improves the overall system integration, minimizes the noise and reduces the chip area and thus saving overall cost of the system. A three-stage CMOS LNA design is simulated and layouted using 90 nm CMOS design kit in ADS.v.12. The simulation result of CMOS LNA shows an achievement of 3.8 dB noise figure, 15.8 dB gain and −28 dB of return loss using proper impedance matching network. In addition, a theoretical analysis of three-stage CMOS LNA without using input–output matching network is done for the optimization of noise figure. A co-design of filter and patch antenna is also analyzed and integrated with CMOS LNA circuit. Finally, tri-design of receiver system demonstrates a peak gain of 25 dB and noise figure of 2.8 dB using proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Vajha, S., & Shastry, P. (2001). A novel proximity coupled active integrated antenna. In IEEE microwave conference 31st european (Vol. 53, pp. 1–4). Vajha, S., & Shastry, P. (2001). A novel proximity coupled active integrated antenna. In IEEE microwave conference 31st european (Vol. 53, pp. 1–4).
3.
Zurück zum Zitat Bories, S., Pelissier, M., Delaveaud, C., & Bourtoutian, R. (2007). Performances analysis of LNA-antenna co-design for UWB system. Antennas and Propagation, EuCAP, 34, 1–5. Bories, S., Pelissier, M., Delaveaud, C., & Bourtoutian, R. (2007). Performances analysis of LNA-antenna co-design for UWB system. Antennas and Propagation, EuCAP, 34, 1–5.
4.
Zurück zum Zitat Wang, Hongrui, Zhang, Lei, Zhang, Li, Wang, Yan, & Zhiping, Yu. (2011). Design of 24 GHz high-gain receiver front-end utilizing ESD-split input matching network. IEEE Transactions on Circuits and Systems, 58, 482–486.CrossRef Wang, Hongrui, Zhang, Lei, Zhang, Li, Wang, Yan, & Zhiping, Yu. (2011). Design of 24 GHz high-gain receiver front-end utilizing ESD-split input matching network. IEEE Transactions on Circuits and Systems, 58, 482–486.CrossRef
5.
Zurück zum Zitat Liu, L. C., Liu, C. S., Kessler, J. R., Wang, S.-K., & Chang, C.-D. (1986). A 30 GHz monolithic receiver. IEEE Transactions on Microwave Theory and Techniques, 34, 1548–1552.CrossRef Liu, L. C., Liu, C. S., Kessler, J. R., Wang, S.-K., & Chang, C.-D. (1986). A 30 GHz monolithic receiver. IEEE Transactions on Microwave Theory and Techniques, 34, 1548–1552.CrossRef
6.
Zurück zum Zitat Montusclat, S., Gianesello, F., & Gloria, D. (2005). Silicon full integrated LNA, filter and antenna system beyond 40 GHz for MMW wireless communication links. In Advanced CMOS technologies, IEEE SOICONF 2005. Montusclat, S., Gianesello, F., & Gloria, D. (2005). Silicon full integrated LNA, filter and antenna system beyond 40 GHz for MMW wireless communication links. In Advanced CMOS technologies, IEEE SOICONF 2005.
7.
Zurück zum Zitat Shigematsu, H., Hirose, T., Brewer, F., & Rodwell, M. (2005). Millimeter wave CMOS circuit design. IEEE Transactions on Microwave Theory and Techniques, 53, 472–477.CrossRef Shigematsu, H., Hirose, T., Brewer, F., & Rodwell, M. (2005). Millimeter wave CMOS circuit design. IEEE Transactions on Microwave Theory and Techniques, 53, 472–477.CrossRef
8.
Zurück zum Zitat Doan, C. H., Emami, S., Nikneiad, A. M., & Brodersen, R. W. (2005). Millimeter-wave CMOS design. IEEE Journal of Solid-State Circuits, 40, 144–155.CrossRef Doan, C. H., Emami, S., Nikneiad, A. M., & Brodersen, R. W. (2005). Millimeter-wave CMOS design. IEEE Journal of Solid-State Circuits, 40, 144–155.CrossRef
9.
Zurück zum Zitat Sun, K. J., Tsai, Z. M., Lin, K. L., & Wang, H. (2006). A noise optimization formulation for CMOS low-noise amplifiers with on-chip low-Q inductors. IEEE Transactions on Microwave Theory and Techniques, 54, 1554–1560.CrossRef Sun, K. J., Tsai, Z. M., Lin, K. L., & Wang, H. (2006). A noise optimization formulation for CMOS low-noise amplifiers with on-chip low-Q inductors. IEEE Transactions on Microwave Theory and Techniques, 54, 1554–1560.CrossRef
10.
Zurück zum Zitat Queudet, F., Pele, I., Froppier, B., Mahe, Y., & Toutain, S. (2002). Integration of pass-band filters in patch antennas. In 32nd European microwave conference—Milan (Vol. 35, pp. 685–688). Queudet, F., Pele, I., Froppier, B., Mahe, Y., & Toutain, S. (2002). Integration of pass-band filters in patch antennas. In 32nd European microwave conferenceMilan (Vol. 35, pp. 685–688).
11.
Zurück zum Zitat Jangid, S., & Kumar, M. (2012). Compact planar UWB patch antenna with integrated bandpass filter and band notched characteristics. In IEEE International conference on communication systems and network technologies (pp. 15–19). Jangid, S., & Kumar, M. (2012). Compact planar UWB patch antenna with integrated bandpass filter and band notched characteristics. In IEEE International conference on communication systems and network technologies (pp. 15–19).
12.
Zurück zum Zitat Allstot, DJ., Li, X., & Shekhar, S. (2004). Design considerations for CMOS low-noise amplifiers. In Proceedings of IEEE radio frequency integrated circuits (RFIC) Symposium (pp. 97–100). Allstot, DJ., Li, X., & Shekhar, S. (2004). Design considerations for CMOS low-noise amplifiers. In Proceedings of IEEE radio frequency integrated circuits (RFIC) Symposium (pp. 97–100).
13.
Zurück zum Zitat Shaeffer, D. K., & Lee, T. H. (1997). A 1.5-V, 1.5 GHz CMOS low noise amplifier. IEEE Journal of Solid-State Circuits, 32, 745–759.CrossRef Shaeffer, D. K., & Lee, T. H. (1997). A 1.5-V, 1.5 GHz CMOS low noise amplifier. IEEE Journal of Solid-State Circuits, 32, 745–759.CrossRef
Metadaten
Titel
A Miniaturization Approach Towards 40 GHz Integrated Single Chip Receiver System for MMW Communication Networks
verfasst von
Sandeep Kumar
Binod Kumar Kanaujia
Santanu Dwari
Ganga Prasad Pandey
Dinesh Kumar Singh
Publikationsdatum
01.09.2015
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2015
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-015-2688-4

Weitere Artikel der Ausgabe 2/2015

Wireless Personal Communications 2/2015 Zur Ausgabe

Neuer Inhalt