Skip to main content
Erschienen in: Microsystem Technologies 10/2016

21.05.2015 | Technical Paper

A miniaturized transient hot-wire device for measuring thermal conductivity of non-conductive fluids

verfasst von: Ashkan Vatani, Peter Lloyd Woodfield, Dzung Viet Dao

Erschienen in: Microsystem Technologies | Ausgabe 10/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents the design, fabrication and characterization of a novel transient hot-wire device for measurement of thermal conductivity of non-conductive fluids. The key features of the cell are small sample amount, simple fabrication, accurate measurement and transparency, which allows the study of both thermal and optical properties of the fluids. A 20 μm-diameter platinum hot wire is symmetrically suspended along the central axis of the capsulated cell to avoid the effect from the walls. A four-point resistance measurement method was used to measure the transient resistance with high accuracy. The accuracy of the thermal conductivity measurement was validated with reference values and very good agreement was achieved.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon Press, OxfordMATH Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon Press, OxfordMATH
Zurück zum Zitat Dao DV, Dau VT, Shiozawa T, Sugiyama S (2007) Development of a dual-axis convective gyroscope with low thermal-induced stress sensing element. Microelectromech Syst J 16(4):950–958CrossRef Dao DV, Dau VT, Shiozawa T, Sugiyama S (2007) Development of a dual-axis convective gyroscope with low thermal-induced stress sensing element. Microelectromech Syst J 16(4):950–958CrossRef
Zurück zum Zitat Dau VT, Tomonori O, Dinh TX, Dao DV, Sugiyama S (2008) A multi axis fluidic inertial sensor. In: Sensors, 2008 IEEE. IEEE Dau VT, Tomonori O, Dinh TX, Dao DV, Sugiyama S (2008) A multi axis fluidic inertial sensor. In: Sensors, 2008 IEEE. IEEE
Zurück zum Zitat Haddad Z, Abu-Nada E, Oztop HF, Mataoui A (2012) Natural convection in nanofluids: are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement? Int J Therm Sci 57:152–162CrossRef Haddad Z, Abu-Nada E, Oztop HF, Mataoui A (2012) Natural convection in nanofluids: are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement? Int J Therm Sci 57:152–162CrossRef
Zurück zum Zitat Hammerschmidt U, Sabuga W (2000) Transient hot wire (THW) method: uncertainty assessment. Int J Thermophys 21(6):1255–1278CrossRef Hammerschmidt U, Sabuga W (2000) Transient hot wire (THW) method: uncertainty assessment. Int J Thermophys 21(6):1255–1278CrossRef
Zurück zum Zitat Healy J, De Groot J, Kestin J (1976) The theory of the transient hot-wire method for measuring thermal conductivity. Physica B+ C 82(2):392–408CrossRef Healy J, De Groot J, Kestin J (1976) The theory of the transient hot-wire method for measuring thermal conductivity. Physica B+ C 82(2):392–408CrossRef
Zurück zum Zitat Kestin J, Sengers J, Kamgar-Parsi B, Sengers JL (1984) Thermophysical properties of fluid H2O. J Phys Chem Ref Data 13(1):175–183CrossRef Kestin J, Sengers J, Kamgar-Parsi B, Sengers JL (1984) Thermophysical properties of fluid H2O. J Phys Chem Ref Data 13(1):175–183CrossRef
Zurück zum Zitat Kleinstreuer C, Feng Y (2011) Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res Lett 6(1):1–13CrossRef Kleinstreuer C, Feng Y (2011) Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res Lett 6(1):1–13CrossRef
Zurück zum Zitat Kostic MM, Walleck CJ (2010) Design of a steady-state, parallel-plate thermal conductivity apparatus for nanofluids and comparative measurements with transient HWTC apparatus. In: ASME 2010 international mechanical engineering congress and exposition. American Society of Mechanical Engineers Kostic MM, Walleck CJ (2010) Design of a steady-state, parallel-plate thermal conductivity apparatus for nanofluids and comparative measurements with transient HWTC apparatus. In: ASME 2010 international mechanical engineering congress and exposition. American Society of Mechanical Engineers
Zurück zum Zitat Liu R, Wu D, Liu S, Koynov K, Knoll W, Li Q (2009) An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew Chem 121(25):4668–4671CrossRef Liu R, Wu D, Liu S, Koynov K, Knoll W, Li Q (2009) An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew Chem 121(25):4668–4671CrossRef
Zurück zum Zitat Patel HE, Das SK, Sundararajan T, Nair AS, George B, Pradeep T (2003) Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett 83(14):2931–2933CrossRef Patel HE, Das SK, Sundararajan T, Nair AS, George B, Pradeep T (2003) Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett 83(14):2931–2933CrossRef
Zurück zum Zitat Paul G, Chopkar M, Manna I, Das P (2010) Techniques for measuring the thermal conductivity of nanofluids: a review. Renew Sustain Energy Rev 14(7):1913–1924CrossRef Paul G, Chopkar M, Manna I, Das P (2010) Techniques for measuring the thermal conductivity of nanofluids: a review. Renew Sustain Energy Rev 14(7):1913–1924CrossRef
Zurück zum Zitat Poppendiek H, Randall R, Breeden J, Chambers J, Murphy J (1967) Thermal conductivity measurements and predictions for biological fluids and tissues. Cryobiology 3(4):318–327CrossRef Poppendiek H, Randall R, Breeden J, Chambers J, Murphy J (1967) Thermal conductivity measurements and predictions for biological fluids and tissues. Cryobiology 3(4):318–327CrossRef
Zurück zum Zitat Privalov G, Kavina V, Freire E, Privalov PL (1995) Precise scanning calorimeter for studying thermal properties of biological macromolecules in dilute solution. Anal Biochem 232(1):79–85CrossRef Privalov G, Kavina V, Freire E, Privalov PL (1995) Precise scanning calorimeter for studying thermal properties of biological macromolecules in dilute solution. Anal Biochem 232(1):79–85CrossRef
Zurück zum Zitat Wakeham WA, Nagashima A, Sengers J (1991) Measurement of the transport properties of fluids. Blackwell Science Inc, Oxford Wakeham WA, Nagashima A, Sengers J (1991) Measurement of the transport properties of fluids. Blackwell Science Inc, Oxford
Zurück zum Zitat Woodfield P, Fukai J, Fujii M, Takata Y, Shinzato K (2008a) Determining thermal conductivity and thermal diffusivity of low-density gases using the transient short-hot-wire method. Int J Thermophys 29(4):1299–1320CrossRef Woodfield P, Fukai J, Fujii M, Takata Y, Shinzato K (2008a) Determining thermal conductivity and thermal diffusivity of low-density gases using the transient short-hot-wire method. Int J Thermophys 29(4):1299–1320CrossRef
Zurück zum Zitat Woodfield P, Fukai J, Fujii M, Takata Y, Shinzato K (2008b) A two-dimensional analytical solution for the transient short-hot-wire method. Int J Thermophys 29(4):1278–1298CrossRef Woodfield P, Fukai J, Fujii M, Takata Y, Shinzato K (2008b) A two-dimensional analytical solution for the transient short-hot-wire method. Int J Thermophys 29(4):1278–1298CrossRef
Zurück zum Zitat Yiamsawasd T, Dalkilic AS, Wongwises S (2012) Measurement of the thermal conductivity of titania and alumina nanofluids. Thermochim Acta 545:48–56CrossRef Yiamsawasd T, Dalkilic AS, Wongwises S (2012) Measurement of the thermal conductivity of titania and alumina nanofluids. Thermochim Acta 545:48–56CrossRef
Metadaten
Titel
A miniaturized transient hot-wire device for measuring thermal conductivity of non-conductive fluids
verfasst von
Ashkan Vatani
Peter Lloyd Woodfield
Dzung Viet Dao
Publikationsdatum
21.05.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 10/2016
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-015-2574-8

Weitere Artikel der Ausgabe 10/2016

Microsystem Technologies 10/2016 Zur Ausgabe

Neuer Inhalt