Skip to main content
Erschienen in:

10.05.2021

A Model-Free Subject Selection Method for Active Learning Classification Procedures

verfasst von: Bo-Shiang Ke, Yuan-chin Ivan Chang

Erschienen in: Journal of Classification | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To construct a classification rule via an active learning method, during the learning process, users select training subjects sequentially, without knowing their labels, based on the model learned at the current stage. For a parametric-model-based classification rule, methods of statistical experimental design are popular guidelines for selecting new learning subjects. However, there is a lack of a counterpart for non-parametric-model-based classifiers, such as support vector machines. Thus, we propose a subject selection scheme via an extended influential index for the area under a receiver operating characteristic curve, which is applicable to general classifiers with continuous scores.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Agresti, A. (2018). An introduction to categorical data analysis. New York: Wiley.MATH Agresti, A. (2018). An introduction to categorical data analysis. New York: Wiley.MATH
Zurück zum Zitat Antal, B., & Hajdu, A. (2014). An ensemble-based system for automatic screening of diabetic retinopathy. Knowledge-Based Systems, 60, 20–27.CrossRef Antal, B., & Hajdu, A. (2014). An ensemble-based system for automatic screening of diabetic retinopathy. Knowledge-Based Systems, 60, 20–27.CrossRef
Zurück zum Zitat Chang, Y.-C.I., & Chen, R.-B. (2019). Active learning with simultaneous subject and variable selections. Neurocomputing, 329, 495–505.CrossRef Chang, Y.-C.I., & Chen, R.-B. (2019). Active learning with simultaneous subject and variable selections. Neurocomputing, 329, 495–505.CrossRef
Zurück zum Zitat Chen, Z., Wang, Z., & Chang, Y.-C.I. (2020). Sequential adaptive variables and subject selection for gee methods. Biometrics, 76(2), 496–507.MathSciNetCrossRef Chen, Z., Wang, Z., & Chang, Y.-C.I. (2020). Sequential adaptive variables and subject selection for gee methods. Biometrics, 76(2), 496–507.MathSciNetCrossRef
Zurück zum Zitat Cook, R.D. (1986). Assessment of local influence. Journal of the Royal Statistical Society, Series B, 48(2), 133–169.MathSciNetMATH Cook, R.D. (1986). Assessment of local influence. Journal of the Royal Statistical Society, Series B, 48(2), 133–169.MathSciNetMATH
Zurück zum Zitat Deng, X., Joseph, V.R., Sudjianto, A., & Wu, C.J. (2009). Active learning through sequential design, with applications to detection of money laundering. Journal of the American Statistical Association, 104(487), 969–981.MathSciNetCrossRef Deng, X., Joseph, V.R., Sudjianto, A., & Wu, C.J. (2009). Active learning through sequential design, with applications to detection of money laundering. Journal of the American Statistical Association, 104(487), 969–981.MathSciNetCrossRef
Zurück zum Zitat Dua, D., & Graff, C. (2017). UCI machine learning repository. Dua, D., & Graff, C. (2017). UCI machine learning repository.
Zurück zum Zitat Hampel, F.R. (1974). The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69(346), 383–393.MathSciNetCrossRef Hampel, F.R. (1974). The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69(346), 383–393.MathSciNetCrossRef
Zurück zum Zitat Owen, A.B. (2001). Empirical likelihood. CRC Press. Owen, A.B. (2001). Empirical likelihood. CRC Press.
Zurück zum Zitat Pepe, M. (2003). The statistical evaluation of medical tests for classification and prediction. Oxford University Press. Pepe, M. (2003). The statistical evaluation of medical tests for classification and prediction. Oxford University Press.
Zurück zum Zitat Pepe, M.S., & Cai, T. (2004). The analysis of placement values for evaluating discriminatory measures. Biometrics, 60(1), 528–535.MathSciNetCrossRef Pepe, M.S., & Cai, T. (2004). The analysis of placement values for evaluating discriminatory measures. Biometrics, 60(1), 528–535.MathSciNetCrossRef
Zurück zum Zitat Schein, A.I., & Ungar, L.H. (2007). Active learning for logistic regression: an evaluation. Machine Learning, 68(3), 235–265.CrossRef Schein, A.I., & Ungar, L.H. (2007). Active learning for logistic regression: an evaluation. Machine Learning, 68(3), 235–265.CrossRef
Zurück zum Zitat Tong, S., & Koller, D. (2001). Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2(Nov), 45–66.MATH Tong, S., & Koller, D. (2001). Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2(Nov), 45–66.MATH
Zurück zum Zitat Wang, J., & Park, E. (2017). Active learning for penalized logistic regression via sequential experimental design. Neurocomputing, 222, 183–190.CrossRef Wang, J., & Park, E. (2017). Active learning for penalized logistic regression via sequential experimental design. Neurocomputing, 222, 183–190.CrossRef
Metadaten
Titel
A Model-Free Subject Selection Method for Active Learning Classification Procedures
verfasst von
Bo-Shiang Ke
Yuan-chin Ivan Chang
Publikationsdatum
10.05.2021
Verlag
Springer US
Erschienen in
Journal of Classification / Ausgabe 3/2021
Print ISSN: 0176-4268
Elektronische ISSN: 1432-1343
DOI
https://doi.org/10.1007/s00357-021-09388-3